Unknown

Dataset Information

0

Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.


ABSTRACT: The prevalent c.903+469T>C mutation in MTRR causes the cblE type of homocystinuria by strengthening an SRSF1 binding site in an ESE leading to activation of a pseudoexon. We hypothesized that other splicing regulatory elements (SREs) are also critical for MTRR pseudoexon inclusion. We demonstrate that the MTRR pseudoexon is on the verge of being recognized and is therefore vulnerable to several point mutations that disrupt a fine-tuned balance between the different SREs. Normally, pseudoexon inclusion is suppressed by a hnRNP A1 binding exonic splicing silencer (ESS). When the c.903+469T>C mutation is present two ESEs abrogate the activity of the ESS and promote pseudoexon inclusion. Blocking the 3'splice site or the ESEs by SSOs is effective in restoring normal splicing of minigenes and endogenous MTRR transcripts in patient cells. By employing an SSO complementary to both ESEs, we were able to rescue MTRR enzymatic activity in patient cells to approximately 50% of that in controls. We show that several point mutations, individually, can activate a pseudoexon, illustrating that this mechanism can occur more frequently than previously expected. Moreover, we demonstrate that SSO blocking of critical ESEs is a promising strategy to treat the increasing number of activated pseudoexons.

SUBMITTER: Palhais B 

PROVIDER: S-EPMC4482064 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.

Palhais Bruno B   Præstegaard Veronica S VS   Sabaratnam Rugivan R   Doktor Thomas Koed TK   Lutz Seraina S   Burda Patricie P   Suormala Terttu T   Baumgartner Matthias M   Fowler Brian B   Bruun Gitte Hoffmann GH   Andersen Henriette Skovgaard HS   Kožich Viktor V   Andresen Brage Storstein BS  

Nucleic acids research 20150415 9


The prevalent c.903+469T>C mutation in MTRR causes the cblE type of homocystinuria by strengthening an SRSF1 binding site in an ESE leading to activation of a pseudoexon. We hypothesized that other splicing regulatory elements (SREs) are also critical for MTRR pseudoexon inclusion. We demonstrate that the MTRR pseudoexon is on the verge of being recognized and is therefore vulnerable to several point mutations that disrupt a fine-tuned balance between the different SREs. Normally, pseudoexon inc  ...[more]

Similar Datasets

| S-EPMC3429857 | biostudies-literature
| S-EPMC4711968 | biostudies-literature
| S-EPMC4932749 | biostudies-literature
| S-EPMC1839040 | biostudies-literature
| S-EPMC1182240 | biostudies-literature
| S-EPMC55807 | biostudies-literature
| S-EPMC6499313 | biostudies-literature
| S-EPMC2872880 | biostudies-literature
| S-EPMC9177970 | biostudies-literature
| S-EPMC2965252 | biostudies-literature