Unknown

Dataset Information

0

Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia.


ABSTRACT: It was recently suggested that electron flow into cyt c, coupled with ROS generation, oxidizes cyt c Met(80) to Met(80) sulfoxide (Met-O) in isolated hearts after ischemia-reperfusion, and converts cyt c to a peroxidase. We hypothesize that ischemia disrupts Met(80)-Fe ligation of cyt c, forming pentacoordinated heme Fe(2+), which inhibits electron transport (ET) and promotes oxygenase activity.SS-20 (Phe-D-Arg-Phe-Lys-NH2) was used to demonstrate the role of Met(80)-Fe ligation in ischemia. Mitochondria were isolated from ischemic rat kidneys to determine sites of respiratory inhibition. Mitochondrial cyt c and cyt c Met-O were quantified by western blot, and cristae architecture was examined by electron microscopy.Biochemical and structural studies showed that SS-20 selectively targets cardiolipin (CL) and protects Met(80)-Fe ligation in cyt c. Ischemic mitochondria showed 17-fold increase in Met-O cyt c, and dramatic cristaeolysis. Loss of cyt c was associated with proteolytic degradation of OPA1. Ischemia significantly inhibited ET initiated by direct reduction of cyt c and coupled respiration. All changes were prevented by SS-20.Our results show that ischemia disrupts the Met(80)-Fe ligation of cyt c resulting in the formation of a globin-like pentacoordinated heme Fe(2+) that inhibits ET, and converts cyt c into an oxygenase to cause CL peroxidation and proteolytic degradation of OPA1, resulting in cyt c release.Cyt c heme structure represents a novel target for minimizing ischemic injury. SS-20, which we show to selectively target CL and protect the Met(80)-Fe ligation, minimizes ischemic injury and promotes ATP recovery.

SUBMITTER: Birk AV 

PROVIDER: S-EPMC4547887 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia.

Birk Alexander V AV   Chao Wesley M WM   Liu Shaoyi S   Soong Yi Y   Szeto Hazel H HH  

Biochimica et biophysica acta 20150610 10


<h4>Background</h4>It was recently suggested that electron flow into cyt c, coupled with ROS generation, oxidizes cyt c Met(80) to Met(80) sulfoxide (Met-O) in isolated hearts after ischemia-reperfusion, and converts cyt c to a peroxidase. We hypothesize that ischemia disrupts Met(80)-Fe ligation of cyt c, forming pentacoordinated heme Fe(2+), which inhibits electron transport (ET) and promotes oxygenase activity.<h4>Methods</h4>SS-20 (Phe-D-Arg-Phe-Lys-NH2) was used to demonstrate the role of M  ...[more]

Similar Datasets

| S-EPMC539742 | biostudies-literature
| S-EPMC3012573 | biostudies-literature
| S-EPMC6114292 | biostudies-literature
| S-EPMC9265292 | biostudies-literature
| S-EPMC7824747 | biostudies-literature
| S-EPMC2874424 | biostudies-literature
| S-EPMC2956932 | biostudies-literature
| S-EPMC6933315 | biostudies-literature
| S-EPMC5560494 | biostudies-other