Project description:Humans speak, monkeys grunt, and ducks quack. How do we come to know which vocalizations animals produce? Here we explore this question by asking whether young infants expect humans, but not other animals, to produce speech, and further, whether infants have similarly restricted expectations about the sources of vocalizations produced by other species. Five-month-old infants matched speech, but not human nonspeech vocalizations, specifically to humans, looking longer at static human faces when human speech was played than when either rhesus monkey or duck calls were played. They also matched monkey calls to monkey faces, looking longer at static rhesus monkey faces when rhesus monkey calls were played than when either human speech or duck calls were played. However, infants failed to match duck vocalizations to duck faces, even though infants likely have more experience with ducks than monkeys. Results show that by 5 months of age, human infants generate expectations about the sources of some vocalizations, mapping human faces to speech and rhesus faces to rhesus calls. Infants' matching capacity does not appear to be based on a simple associative mechanism or restricted to their specific experiences. We discuss these findings in terms of how infants may achieve such competence, as well as its specificity and relevance to acquiring language.
Project description:Human adults automatically mimic others' emotional expressions, which is believed to contribute to sharing emotions with others. Although this behaviour appears fundamental to social reciprocity, little is known about its developmental process. Therefore, we examined whether infants show automatic facial mimicry in response to others' emotional expressions. Facial electromyographic activity over the corrugator supercilii (brow) and zygomaticus major (cheek) of four- to five-month-old infants was measured while they viewed dynamic clips presenting audiovisual, visual and auditory emotions. The audiovisual bimodal emotion stimuli were a display of a laughing/crying facial expression with an emotionally congruent vocalization, whereas the visual/auditory unimodal emotion stimuli displayed those emotional faces/vocalizations paired with a neutral vocalization/face, respectively. Increased activation of the corrugator supercilii muscle in response to audiovisual cries and the zygomaticus major in response to audiovisual laughter were observed between 500 and 1000 ms after stimulus onset, which clearly suggests rapid facial mimicry. By contrast, both visual and auditory unimodal emotion stimuli did not activate the infants' corresponding muscles. These results revealed that automatic facial mimicry is present as early as five months of age, when multimodal emotional information is present.
Project description:Attention turns looking, into seeing. Yet, little developmental research has examined the interface of attention and visual working memory (VWM), where what is seen is maintained for use in ongoing visual tasks. Using the task-evoked pupil response - a sensitive, real-time, involuntary measure of focused attention that has been shown to correlate with VWM performance in adults and older children - we examined the relationship between focused attention and VWM in 13-month-olds. We used a Delayed Match Retrieval paradigm, to test infants' VWM for object-location bindings - what went where - while recording anticipatory gaze responses and pupil dilation. We found that infants with greater focused attention during memory encoding showed significantly better memory performance. As well, trials that ended in a correct response had significantly greater pupil response during memory encoding than incorrect trials. Taken together, this shows that pupillometry can be used as a measure of focused attention in infants, and a means to identify those individuals, or moments, where cognitive effort is maximized.
Project description:The aim of this study was to investigate neural dynamics of audiovisual temporal fusion processes in 6-month-old infants using event-related brain potentials (ERPs). In a habituation-test paradigm, infants did not show any behavioral signs of discrimination of an audiovisual asynchrony of 200 ms, indicating perceptual fusion. In a subsequent EEG experiment, audiovisual synchronous stimuli and stimuli with a visual delay of 200 ms were presented in random order. In contrast to the behavioral data, brain activity differed significantly between the two conditions. Critically, N1 and P2 latency delays were not observed between synchronous and fused items, contrary to previously observed N1 and P2 latency delays between synchrony and perceived asynchrony. Hence, temporal interaction processes in the infant brain between the two sensory modalities varied as a function of perceptual fusion versus asynchrony perception. The visual recognition components Pb and Nc were modulated prior to sound onset, emphasizing the importance of anticipatory visual events for the prediction of auditory signals. Results suggest mechanisms by which young infants predictively adjust their ongoing neural activity to the temporal synchrony relations to be expected between vision and audition.
Project description:For more than two decades, researchers have argued that young children do not understand mental states such as beliefs. Part of the evidence for this claim comes from preschoolers' failure at verbal tasks that require the understanding that others may hold false beliefs. Here, we used a novel nonverbal task to examine 15-month-old infants' ability to predict an actor's behavior on the basis of her true or false belief about a toy's hiding place. Results were positive, supporting the view that, from a young age, children appeal to mental states--goals, perceptions, and beliefs--to explain the behavior of others.
Project description:Early life nutrition and feeding practices are important modifiable determinants of subsequent obesity, yet little is known about the circadian feeding pattern of 12-month-old infants. We aimed to describe the 24-h feeding patterns of 12-month-old infants and examine their associations with maternal and infant characteristics. Mothers from a prospective birth cohort study (n 431) reported dietary intakes of their 12-month-old infants and respective feeding times using 24-h dietary recall. Based on their feeding times, infants were classified into post-midnight (00.00-05.59 hours) and pre-midnight (06.00-23.59 hours) feeders. Mean daily energy intake was 3234 (sd 950) kJ (773 (sd 227) kcal), comprising 51·8 (sd 7·8) % carbohydrate, 33·9 (sd 7·2) % fat and 14·4 (sd 3·2) % protein. Mean hourly energy intake and proportion of infants fed were lower during post-midnight than pre-midnight hours. There were 251 (58·2 %) pre-midnight and 180 (41·8 %) post-midnight feeders. Post-midnight feeders consumed higher daily energy, carbohydrate, fat and protein intakes than pre-midnight feeders (all P<0·001). The difference in energy intake originated from energy content consumed during the post-midnight period. Majority (n 173) of post-midnight feeders consumed formula milk during the post-midnight period. Using multivariate logistic regression with confounder adjustment, exclusively breast-feeding during the first 6 months of life was negatively associated with post-midnight feeding at 12 months (adjusted OR 0·31; 95 % CI 0·11, 0·82). This study provides new insights into the circadian pattern of energy intake during infancy. Our findings indicated that the timing of feeding at 12 months was associated with daily energy and macronutrient intakes, and feeding mode during early infancy.
Project description:The human ability to produce and understand an indefinite number of sentences is driven by syntax, a cognitive system that can combine a finite number of primitive linguistic elements to build arbitrarily complex expressions. The expressive power of syntax comes in part from its ability to encode potentially unbounded dependencies over abstract structural configurations. How does such a system develop in human minds? We show that 18-mo-old infants are capable of representing abstract nonlocal dependencies, suggesting that a core property of syntax emerges early in development. Our test case is English wh-questions, in which a fronted wh-phrase can act as the argument of a verb at a distance (e.g., What did the chef burn?). Whereas prior work has focused on infants' interpretations of these questions, we introduce a test to probe their underlying syntactic representations, independent of meaning. We ask when infants know that an object wh-phrase and a local object of a verb cannot co-occur because they both express the same argument relation (e.g., * What did the chef burn the pizza ). We find that 1) 18 mo olds demonstrate awareness of this complementary distribution pattern and thus represent the nonlocal grammatical dependency between the wh-phrase and the verb, but 2) younger infants do not. These results suggest that the second year of life is a period of active syntactic development, during which the computational capacities for representing nonlocal syntactic dependencies become evident.
Project description:Humans' ability to create and manipulate symbolic structures far exceeds that of other animals. We hypothesized that this ability rests on an early capacity to use arbitrary signs to represent any mental representation, even as abstract as an algebraic rule. In three experiments, we collected high-density EEG recordings while 150 5-month-old infants were presented with speech triplets characterized by their abstract syllabic structure-the location of syllable repetition-which predicted a following arbitrary label (e.g., ABA words were followed by a fish picture, AAB words by a lion). After a brief learning phase, EEG responses to novel words revealed that infants built expectations about the upcoming label based on the triplet structure and were surprised when it happened to be incongruent. Preverbal infants were thus able to recode the incoming triplets into abstract mental variables to which arbitrary labels were flexibly assigned. Importantly, infants also generalized to novel trials in which the pairing order was reversed (with the label preceding the auditory structure). Beyond conditioned associations, infants instantly inferred a bidirectional mapping between the abstract structures and the following label, a foundational operation for any symbolic system.
Project description:BackgroundMetabolic programming of glucose homeostasis in the first 1,000 days of life may impact lifelong metabolic and cardiovascular health. Continuous glucose monitoring (CGM) devices may help measure the impact of dietary intake on glucose rhythms and metabolism in infants during the complementary feeding period.ObjectivesDemonstrate the feasibility of CGM to measure and quantify glucose variability in response to infant feeding and to evaluate associations between macronutrient meal composition and glucose variability.MethodsThe "FreeStyle Libre Pro®" device interstitial glucose meter was applied to the anterior thigh of 10 healthy 6-12-month-old infants. Parents recorded food intake, time of feeding, and used daily dairies to record sleep time and duration. Descriptive statistics were employed for food intake, sleep and key glycemic parameters over three full days. Mixed linear models were used to assess glycemic changes.ResultsMid-day, afternoon, and evening feeds contained >30 g carbohydrate and induced higher 2-h iAUC (3.42, 3.41, and 3.50 mmol/L*h respectively) compared to early and mid-morning feedings with ≤25 g carbohydrates (iAUC 2.72 and 2.81 mmol/L*h, p < 0.05). Early morning and evening milk feedings contained approximately 9 g of fat and induced a longer time to reach maximal glucose value (Tmax; 75 and 68 min, respectively) compared to lower fat feedings (2.9-5.9 g; Tmax range: 34-60 min; p < 0.05). Incremental glucose value at time of food intake (C0) increased significantly from 0.24 ± 0.39 mM in early morning to 1.07 ± 0.57 mM in the evening (p < 0.05). Over the day, 70% of glucose values remained within the normal range (3.5-5.5 mmol/L), 10% were between 5.5-10 mmol/L, and 20% were < 3.5 mmol/L.ConclusionOur data support the feasibility of using CGM to measure glucose in 6-12-month-old infants. The observation of possible diurnal glucose variability and typical glucose values may have implications for future studies investigating metabolic adaptation to nutritional intake in early life.
Project description:Collaborative activities in which individuals coordinate their actions to attain a common goal play a fundamental role in our everyday lives. Evidence suggests that infants engage in collaborative activities before their first birthday, however little is known about infants' understanding of collaborative action. Using a visual habituation paradigm, this research consists of two experiments designed to investigate whether 10-month-olds understand that the actions of collaborative partners are critical to the attainment of a common goal. The results of Experiment 1 suggest that 10-month-olds represent the actions of collaborating partners in terms of a common collaborative goal only after receiving active experience with a collaborative activity. Experiment 2 demonstrated that infants who received active experience with a collaborative activity viewed active engagement in a collaboration as being critical for an individual's actions to be interpreted as being directed towards a collaborative goal. Together, these findings demonstrate that 10-month-olds exhibit an understanding of the shared nature of collaborative goals after a highly salient experience with the activity. Identifying the effects of experience on infants' understanding of collaborative goals in a laboratory context provides insights into the role that experiences in their everyday lives might play in their understanding of collaboration.