Project description:Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
Project description:In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG.
Project description:Proliferating cell nuclear antigen (PCNA), the eukaryotic DNA sliding clamp, forms a ring-shaped homo-trimer that encircles double-stranded DNA. This protein is best known for its ability to confer high processivity to replicative DNA polymerases. However, it does far more than this, because it forms a mobile platform on the DNA that recruits many of the proteins involved in DNA replication, repair, and recombination to replication forks. X-ray crystal structures of PCNA bound to PCNA-binding proteins have provided insights into how PCNA recognizes its binding partners and recruits them to replication forks. More recently, X-ray crystal structures of ubiquitin-modified and SUMO-modified PCNA have provided insights into how these post-translational modifications alter the specificity of PCNA for some of its binding partners. This article focuses on the insights gained from structural studies of PCNA complexes and post-translationally modified PCNA.
Project description:New insights into functional flexibility at the peptidyl transferase center (PTC) and its vicinity were obtained by analysis of pleuromutilins binding modes to the ribosome. The crystal structures of Deinococcus radiodurans large ribosomal subunit complexed with each of three pleuromutilin derivatives: retapamulin (SB-275833), SB-280080, and SB-571519, show that all bind to the PTC with their core oriented similarly at the A-site and their C14 extensions pointing toward the P-site. Except for an H-bond network with a single nucleotide, G2061, which involves the essential keto group of all three compounds, only minor hydrophobic contacts are formed between the pleuromutilin C14 extensions and any ribosomal component, consistent with the PTC tolerance to amino acid diversity. Efficient drug binding mode is attained by a mechanism based on induced-fit motions exploiting the ribosomal intrinsic functional flexibility and resulting in conformational rearrangements that seal the pleuromutilin-binding pocket and tightens it up. Comparative studies identified a network of remote interactions around the PTC, indicating that pleuromutilins selectivity is acquired by nonconserved nucleotides residing in the PTC vicinity, in a fashion resembling allosterism. Likewise, pleuromutilin resistant mechanisms involve nucleotides residing in the environs of the binding pocket, consistent with their slow resistance-development rates.
Project description:Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe-like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3-channels were selectively reduced, (iv) the intrinsic Ca(2)(+) dependence of fast exocytosis probed by Ca(2)(+) uncaging remained unchanged but (v) the apparent Ca(2)(+) dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca(2)(+) influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca(2)(+) influx through an individual channel dominates the [Ca(2)(+)] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca(2)(+) influx and exocytosis.
Project description:BackgroundThe physiological and pathophysiological mechanisms that govern diving, both self-contained underwater breathing apparatus (SCUBA) and breath-hold diving (BH-diving), are in large part well known, even if there are still many unknown aspects, in particular about cell metabolism during BH-diving. The scope of this study was to investigate changes in glycemia, insulinemia, and the catecholamine response to BH-diving, to better understand if the insulin-stimulated glucose uptake mechanism is involved in cellular metabolism in this sport.MethodsTwenty male experienced healthy breath-hold divers were studied. Anthropometric information was obtained. Glycemia, insulinemia, and catecholamine response were investigated before and after the series of BH-diving.ResultsWe found a statistically significant decrease in the blood glucose levels between before and after dives (mean 94.3 ± 11.6 vs. 83.5 ± 12.5 mg/dl) P = 0.001 and a statistically significant increase in blood insulin value (median 4.5 range 3.4/6.4 vs. 7.0 range 4.2/10.2 mcgU/ml) P < 0.0001. Also, we found a statistically significant increase of catecholamine production (median 14.0 range 8/18 vs. 15.5 range 10.0/21.0 μg) P < 0.0001.ConclusionsThe increase in blood insulin during BH-diving associated with the decrease of blood glucose levels could indicate that the upregulating cellular uptake is not caused by activation of the specific glucose transporters. Particular diving-related conditions such as the diving reflex, the intermittent hypoxia/hyperoxia, and the particular environmental condition could play an important role in the mechanism involved in glycemia decrease in BH-diving. Our data confirm that the adaptations to BH-diving are caused by complex mechanisms and involve many peculiar responses still in large part unknown.
Project description:Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNAS228I mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3p66 and PolD4p12. In contrast p21 largely retains the ability to bind PCNAS228I. This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNAS228I binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNAS228I for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD.
Project description:Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed.
Project description:In this issue, a study by Groehler and Lannigan (2010. J. Cell Biol. doi:10.1083/jcb.201002124) sheds light on the regulation of proliferating cell nuclear antigen (PCNA) turnover and how it is counteracted by the small chromatin-bound kinase ERK8 (extracellular signal-regulated kinase 8). Importantly, inactivation of ERK8 results in genome instability and is associated with cell transformation.
Project description:DNA sliding clamps form an oligomeric ring encircling DNA and serve as a moving platform for DNA-processing proteins. The opening and closing of a sliding-clamp ring is essential to load the clamp onto DNA in order to perform its functions. The molecular details of how clamp rings open and enclose DNA are still not clear. Three PCNA homologues have been found in Sulfolobus solfataricus which form a heterotrimer. Taking advantage of their hetero-oligomeric nature, the structures of the PCNAs in monomeric PCNA3, dimeric PCNA1-PCNA2 and trimeric PCNA1-PCNA2-PCNA3 forms were determined at resolutions of 2.6-1.9 A. The distinct oligomeric structures represent different stages in ring formation, which were verified in solution by ultracentrifugation analysis. The heterodimer opens in a V-shape of 130 degrees , while the heterotrimers form a ring with a 120 degrees rotation between monomers. The association of a rigid PCNA3 monomer with an opened PCNA1-PCNA2 heterodimer closes the ring and introduces a spring tension in the PCNA1-PCNA2 interface, thus bending the nine-stranded intermolecular beta-sheet to fit the 120 degrees rotation. The release of the spring tension as PCNA3 dissociates from the ring may facilitate ring opening. The structural features in different assemblies present a molecular model for clamp ring assembly and opening.