Project description:ObjectivesIFI27 is highly expressed in psoriatic lesions but its function has not been known. The present study aimed to explore its role in proliferation of epidermal keratinocytes.Materials and methodsIFI27 knockdown and over-expression in keratinocytes were used to compare their proliferation, by MTT assay, apoptosis (by annexin V binding) and cell cycle progression by flow cytometry. Formation of cyclin A/CDK1 complex was examined by a co-immunoprecipitaion method. Anti-proliferation effects of IFI27 were also examined in vivo by topical application of IFI27 siRNA on imiquimod-induced psoriatic lesions, in a mouse model.ResultsEpidermal growth factor was demonstrated to increase IFI27 expression by prolonging half-life of IFI27 protein. The IFI27 knockdown in keratinocytes reduced the proliferation rate, but had no effect on apoptosis nor on apoptosis-related genes. Interestingly, IFI27 knockdown resulted in S-phase arrest that was found to be associated with increased Tyr15 phosphorylation of CDK1, reduced CDC25B and reduced formation of cyclin A/CDK1 complex. In addition, IFI27 knockdown was also shown to activate p53 by Ser15 phosphorylation and increase p21 expression. Topical application of IFI27 siRNA on imiquimod-induced psoriatic lesion in a mouse model reduced epidermal thickness, formation of rete ridges and PCNA expression.ConclusionsOur study demonstrates for the first time, that cell function of IFI27 is involved in proliferation of skin keratinocytes both in vitro and in vivo. It suggests that IFI27 might be a suitable target for development of a novel anti-psoriasis therapy.
Project description:Genetic defects in matriptase are linked to two congenital ichthyoses: autosomal recessive ichthyosis with hypotrichosis (ARIH, OMIM 610765) and ichthyosis, follicular atrophoderma, hypotrichosis, and hypohidrosis (IFAH, OMIM 602400). Mouse models with matriptase deficiency indicate an involvement of matriptase in suprabasal keratinocytes in the maintenance of the epidermal barrier. In contrast to what has been reported for mouse skin, we show that in human skin matriptase is primarily expressed in the basal and spinous keratinocytes, but not in the more differentiated keratinocytes of the granular layer. In addition, matriptase zymogen activation was predominantly detected in the basal cells. Furthermore, by using skin organotypic cultures as a model system to monitor the course of human epidermal differentiation, we found elevated matriptase zymogen activation during early stages of epidermal differentiation, coupled with a loss of matriptase expression in the late stages of this process. We also show here that matriptase deficiency in HaCaT cells modestly reduces cell proliferation and temporally affects calcium-induced expression of differentiation markers. These collective data suggest that, unlike mouse matriptase, human matriptase may be involved in the regulation of keratinocyte growth and early differentiation, rather than terminal differentiation, providing mechanistic insights into the pathology of the two congenital ichthyoses: ARIH and IFAH.
Project description:Like for other somatic tissues, isolation of a pure population of stem cells has been a primary goal in epidermal biology. We isolated discrete populations of freshly obtained human neonatal keratinocytes (HNKs) using previously untested candidate stem cell markers aldehyde dehydrogenase (ALDH) and CD44 as well as the previously studied combination of integrin α6 and CD71. An in vivo transplantation assay combined with limiting dilution analysis was used to quantify enrichment for long-term repopulating cells in the isolated populations. The ALDH(+) CD44(+) population was enriched 12.6-fold for long-term repopulating epidermal stem cells (EpiSCs) and the integrin α6(hi) CD71(lo) population was enriched 5.6-fold, over unfractionated cells. In addition to long-term repopulation, CD44(+) ALDH(+) keratinocytes exhibited other stem cell properties. CD44(+) ALDH(+) keratinocytes had self-renewal ability, demonstrated by increased numbers of cells expressing nuclear Bmi-1, serial transplantation of CD44(+) ALDH(+) cells, and holoclone formation in vitro. CD44(+) ALDH(+) cells were multipotent, producing greater numbers of hair follicle-like structures than CD44(-) ALDH(-) cells. Furthermore, 58% ± 7% of CD44(+) ALDH(+) cells exhibited label-retention. In vitro, CD44(+) ALDH(+) cells showed enhanced colony formation, in both keratinocyte and embryonic stem cell growth media. In summary, the CD44(+) ALDH(+) population exhibits stem cell properties including long-term epidermal regeneration, multipotency, label retention, and holoclone formation. This study shows that it is possible to quantify the relative number of EpiSCs in human keratinocyte populations using long-term repopulation as a functional test of stem cell nature. Future studies will combine isolation strategies as dictated by the results of quantitative transplantation assays, in order to achieve a nearly pure population of EpiSCs.
Project description:Adipogenesis is a complex biological process and the main cause of obesity. Recently, microRNAs (miRNAs), a class of small endogenous non-coding RNAs, have been proven to play an important role in adipogenesis by the post-transcriptional regulation of target genes. In this current study, we observed an increment of miR-152 expression during the process of 3T3-L1 cell audiogenic differentiation. A functional analysis indicated that the overexpression of miR-152 inhibited pre-adipocyte proliferation and suppressed the expression of some cell cycle-related genes. Moreover, the overexpression of miR-152 promoted lipid accumulation in 3T3-L1 preadipocytes accompanied by increase of the expression of some pro-audiogenic genes. Additionally, a dual-luciferase reporter assay demonstrated lipoprotein lipase (LPL) was a direct target gene of miR-152 during preadipocyte differentiation. Further analysis showed that miR-152 was positively correlated with adipogenesis and intramuscular fat formation in vivo. Taken together, our findings suggest that miR-152 could suppress 3T3-L1 preadipocyte proliferation, whereas it could promote 3T3-L1 preadipocyte differentiation by negatively regulating LPL. The findings indicate that miR-152 might have a therapeutic significance for obesity and obesity-related metabolic syndrome.
Project description:Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis.
Project description:We show here that keratinocytic nuclear receptor retinoid X receptor-? (RXR?) regulates mouse keratinocyte and melanocyte homeostasis following acute UVR. Keratinocytic RXR? has a protective role in UVR-induced keratinocyte and melanocyte proliferation/differentiation, oxidative stress-mediated DNA damage, and cellular apoptosis. We discovered that keratinocytic RXR?, in a cell-autonomous manner, regulates mitogenic growth responses in skin epidermis through secretion of heparin-binding EGF-like growth factor, GM-CSF, IL-1?, and cyclooxygenase-2 and activation of mitogen-activated protein kinase pathways. We identified altered expression of several keratinocyte-derived mitogenic paracrine growth factors such as endothelin 1, hepatocyte growth factor, ?-melanocyte stimulating hormone, stem cell factor, and fibroblast growth factor-2 in skin of mice lacking RXR? in epidermal keratinocytes (RXR?(ep-/-) mice), which in a non-cell-autonomous manner modulated melanocyte proliferation and activation after UVR. RXR?(ep-/-) mice represent a unique animal model in which UVR induces melanocyte proliferation/activation in both epidermis and dermis. Considered together, the results of our study suggest that RXR antagonists, together with inhibitors of cell proliferation, can be effective in preventing solar UVR-induced photocarcinogenesis.
Project description:Several recent reports have demonstrated that photoreceptors are expressed in human skin. The rod and cone photoreceptor-like proteins are expressed in human skin and rhodopsin, long wavelength-opsin, and short wavelength-opsin are also present in cultured murine melanocytes. Furthermore, the photopigment rhodopsin is expressed in human melanocytes and is involved in ultraviolet A phototransduction which induces early melanin synthesis. In this study, we investigated whether rhodopsin is expressed and plays any physiological roles in the normal human epidermal keratinocytes (NHEKs). We found that rhodopsin was expressed and localized on the plasma membrane in NHEKs, and only violet light among several wavelengths within the visible range significantly increased the expression of rhodopsin mRNA. We further found that rhodopsin over-expression decreased the mRNA expression levels of keratinocyte differentiation markers, such as keratin-1 and keratin-10, and violet light also decreased the mRNA expression levels of keratinocyte differentiation markers and these decreased expression levels were recovered by a rhodopsin-directed siRNA. Moreover, we further demonstrated that violet light significantly decreased the phosphorylation levels of cAMP responsive element-binding protein (CREB) and that it more effectively decreased the phosphorylation of CREB when rhodopsin was over-expressed. In addition, we observed that pertussis toxin, a Gαi protein inhibitor, restored the rhodopsin-induced decrease in the differentiation markers in NHEKs. Taken together, these results suggest that rhodopsin down-regulates the expression levels of specific keratinocyte differentiation markers via the Gαi signaling pathway in NHEKs.
Project description:Human papillomaviruses induce a host of anogenital cancers, as well as oropharyngeal cancer (HPV+OPC); human papillomavirus 16 (HPV16) is causative in around 90% of HPV+OPC cases. Using telomerase reverse transcriptase (TERT) immortalized foreskin keratinocytes (N/Tert-1), we have identified significant host gene reprogramming by HPV16 (N/Tert-1+HPV16) and demonstrated that N/Tert-1+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) is transcriptionally regulated by HPV16 in N/Tert-1. CRISPR/Cas9 removal of SAMHD1 from N/Tert-1 and N/Tert-1+HPV16 demonstrates that SAMHD1 controls cell proliferation of N/Tert-1 only in the presence of HPV16; the deletion of SAMHD1 promotes hyperproliferation of N/Tert-1+HPV16 cells in organotypic raft cultures but has no effect on N/Tert-1. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in nonimmortalized primary keratinocytes due to their limited life span. To confirm the relevance of our results, we repeated the analysis with human tonsil keratinocytes (HTK) immortalized by HPV16 (HTK+HPV16) and observed the same hyperproliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of N/Tert-1 with N/Tert-1+HPV16, combined with HTK+HPV16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in keratinocytes.IMPORTANCE HPVs are causative agents in human cancers and are responsible for around of 5% of all cancers. A better understanding of the viral life cycle in keratinocytes will facilitate the development of novel therapeutics to combat HPV-positive cancers. Here, we present a unique keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein levels in keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in keratinocytes and elevated viral replication but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.
Project description:ObjectivesSprouty (SPRY) 1 is one of the SPRY proteins that inhibits signalling from various growth factors pathways and has also been known as a tumour suppressor in various malignancies. However, no study elucidates the role of SPRY1 in the skin. Our study was conducted to determine the function of SPRY1 in human keratinocytes and the epidermis.Materials and methodsIn vitro primary cultured epidermal keratinocytes were used to investigate the proliferation, differentiation and apoptosis of these cells. We also established overexpression of SPRY1 in vitro and K14-SPRY1 transgenic mice.ResultsSPRY1 was mainly located in the cytoplasm of the epidermal keratinocytes from the granular epidermal layer of the skin and cultured cells. Overexpressed SPRY1 in keratinocytes resulted in up-regulation of P21, P27 and down-regulation of cyclin B1; decrease in MMP3 and integrin α6. SPRY1-overexpressed primary keratinocytes exhibited a lower proliferation and migration capability and higher rates of apoptosis. Epidermis of SPRY1-TG mice represented delayed wound healing. Proteomics analysis and GO enrichment showed DEPs of SPRY1 TG mice epidermis is significantly enriched in immune- and inflammatory-associated biological process.ConclusionsIn summary, SPRY1 expression was inversely correlated with cell proliferation, migration and promote cell apoptosis of keratinocytes. SPRY1 maybe a negative feedback regulator in normal human epidermal keratinocytes and cutaneous inflammatory responses. Our study raised the possibility that enhancing expression of SPRY1 may have the potential to promote anti-inflammatory effects.
Project description:BackgroundSkin injury is inevitable in daily life. In recent years, with the increasing morbidity of diseases such as diabetes and metabolic disorders, chronic wounds have become a considerable challenge in clinical practice. Royal jelly, reported to have multifarious biological and physiological properties, has been used as a remedy for a variety of wounds since ancient times. However, the active components and mechanisms underlying the wound-healing properties of royal jelly are still largely unknown.MethodsWater-soluble proteins of royal jelly were fractionated and investigated for the proliferative and migratory effects on human epidermal keratinocytes (HaCaT) in an in vitro wound healing model. The proteins present in bioactive fractions were characterised and quantified using Label-free protein quantification method. The potential functions of these proteins in biological systems were further analysed using bioinformatic tools.ResultsA protein fraction, mainly containing major royal jelly proteins 2 (MRJP2), MRJP3 and MRJP7, stimulated proliferative and migratory activities in HaCaT cells without visible cytotoxicity. It exerted the greatest effects on the growth of HaCaT cells in the first 48 h. Furthermore, when treated with this protein fraction, the closure rates of the in vitro scratch wound were significantly increased. Functional analysis indicated that MRJP2, MRJP3 and MRJP7 were associated with carbohydrate transport and metabolism.ConclusionsWe fractionated the water-soluble proteins of royal jelly and identified one fraction (Fraction 2) that induced both proliferative and migratory effects on a human epidermal keratinocyte cell line. Major royal jelly proteins (MRJP2, MRJP3 and/or MRJP7) were speculated to possess potential wound-healing bioactivity. This is the first report that royal jelly may improve wound closure via MRJP-induced cellular proliferation and migration. These proteins may be valuable lead compounds for the development of novel wound healing medications. Our findings would facilitate better understanding of the wound repair mechanisms of royal jelly.