Wild yeast harbour a variety of distinct amyloid structures with strong prion-inducing capabilities.
Ontology highlight
ABSTRACT: Variation in amyloid structures profoundly influences a wide array of pathological phenotypes in mammalian protein conformation disorders and dominantly inherited phenotypes in yeast. Here, we describe, for the first time, naturally occurring, self-propagating, structural variants of a prion protein isolated from wild strains of the yeast Saccharomyces cerevisiae. Variants of the [RNQ⁺] prion propagating in a variety of wild yeast differ biochemically, in their intracellular distributions, and in their ability to promote formation of the [PSI⁺] prion. [PSI⁺] is an epigenetic regulator of cellular phenotype and adaptability. Strikingly, we find that most natural [RNQ⁺] variants induced [PSI⁺] at high frequencies and the majority of [PSI⁺] variants elicited strong cellular phenotypes. We hypothesize that the presence of an efficient [RNQ⁺] template primes the cell for [PSI⁺] formation in order to induce [PSI⁺] in conditions where it would be advantageous. These studies utilize naturally occurring structural variants to expand our understanding of the consequences of diverse prion conformations on cellular phenotypes.
SUBMITTER: Westergard L
PROVIDER: S-EPMC4708258 | biostudies-literature | 2014 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA