Unknown

Dataset Information

0

CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.


ABSTRACT:

Background and purpose

Previous studies of ischemia-reperfusion injury (IRI) in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2) would limit infarct size and improve functional recovery and what signaling pathways are involved.

Experimental approach

Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa) rhCCN2 (250 nM) or vehicle during the first 15 min of a 60 min reperfusion period.

Key results

Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p < 0.001) which was abrogated by concomitant administration of the PI3 kinase inhibitor LY294002 (45 ± 3% vs. 50 ± 3%, ns). In congruence with reduction of infarct size rhCCN2 also improved recovery of left ventricular developed pressure (p < 0.05). Western blot analyses of extracts of ex vivo-perfused murine hearts also revealed that rhCCN2 evoked concentration-dependent increase of cardiac phospho-GSK3? (serine-9) contents.

Conclusions and implications

We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3? (Ser-9). Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.

SUBMITTER: Kaasboll OJ 

PROVIDER: S-EPMC4752337 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.

Kaasbøll Ole Jørgen OJ   Moe Ingvild Tronstad IT   Ahmed Mohammad Shakil MS   Stang Espen E   Hagelin Else Marie Valbjørn EM   Attramadal Håvard H  

PloS one 20160212 2


<h4>Background and purpose</h4>Previous studies of ischemia-reperfusion injury (IRI) in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2) would limit infarct size and improve functional recovery and what signaling pathways are involved.<h4>Experimental approach</h4>Isolated mice hearts were perfused ad  ...[more]

Similar Datasets

| S-EPMC3174377 | biostudies-literature
| S-EPMC7810382 | biostudies-literature
| S-EPMC4002968 | biostudies-other
| S-EPMC3730367 | biostudies-literature
| S-EPMC7990852 | biostudies-literature
| S-EPMC6367534 | biostudies-literature