Project description:A protocol for silver-catalyzed controlled intermolecular cross-coupling of silyl enolates is disclosed. The protocol displays good functional group tolerance and allows efficient preparation of a series of synthetically useful 1,4-diketones. Preliminary mechanistic investigations suggest that the reaction proceeds through a one-electron process involving free radical species in which PhBr acts as the oxidant.
Project description:An efficient and green route of C-C bond formation was disclosed to construct 2,3-diaryl-1,4-diketones from α-methylene ketones by the catalysis of tetrabutylammonium iodide (TBAI) with tert-butyl hydroperoxide (TBHP) as an oxidant in water. This reaction affords the desired products in good to excellent yields from readily available materials, with a broad substrate scope, good functional group tolerance, and mild reaction conditions. Furthermore, tetrasubstituted furan and pyrrole were smoothly constructed from α-methylene ketones in one pot with 96 and 90% yields, respectively.
Project description:Boronic esters react with 2-lithiated indoles to form boronate intermediates. The boronate reacts with allylic acetates in the presence of (BINAP)Pd catalysts to allylate C3 concurrent with alkyl migration from B to C2 of the indole. Overall, the process is a three-component coupling that joins an allylic acetate, and indole and an organo-B(pin) species to provide substituted indoles and indolines with high enantio-, regio-, and diastereoselectivity.
Project description:The enol silanes of vinylogous esters and amides are classic dienes for Diels-Alder reactions. Here, we report their reactivity as nucleophiles in Ir-catalyzed, enantioselective allylic substitution reactions. A variety of allylic carbonates react with these nucleophiles to give allylated products in good yields with high enantioselectivities and excellent branched-to-linear ratios. These reactions occur with KF or alkoxide as the additive, but mechanistic studies suggest that these additives do not activate the enol silanes. Instead, they serve as bases to promote the cyclometalation to generate the active Ir catalyst. The carbonate anion, which was generated from the oxidative addition of the allylic carbonate, likely activates the enol silanes to trigger their activity as nucleophiles for reactions with the allyliridium electrophile. The synthetic utility of this method was illustrated by the synthesis of the anti-muscarinic drug, fesoterodine.
Project description:The palladium-catalyzed benzylic-like nucleophilic substitution of benzofuran-2-ylmethyl acetate with N, S, O and C soft nucleophiles has been investigated. The success of the reaction is dramatically influenced by the choice of catalytic system: with nitrogen based nucleophiles the reaction works well with Pd2(dba)3/dppf, while with sulfur, oxygen and carbo-nucleophiles [Pd(η3-C3H5)Cl]2/XPhos is more efficient. The regiochemical outcome shows that the nucleophilic substitution occurs only on the benzylic position of the η3-(benzofuryl)methyl complex. The high to excellent yields and the simplicity of the experimental procedure make this protocol a versatile synthetic tool for the preparation of 2-substituted benzo[b]furans.
Project description:A metal-free catalytic allylation with atom economy and green environment friendly was developed. Allylic alcohols could be directly dehydrated in water by B(C6F5)3, without using any base additives. The reaction can afford the corresponding monoallylated product in moderate to high yield and has been performed on a gram-scale, and a quaternary carbon center can be constructed for the active methine compounds of 1,3-diketones or β-ketone esters in this process. The product can be further converted, such as the synthesis of tetra-substituted pyrazole compounds, or 1,4-dienes and functionalized dihydropyrans.
Project description:α,β-Unsaturated esters are key structural motifs widely distributed in various biologically active molecules, and their Z/E-stereoselective synthesis has always been considered highly attractive in organic synthesis. Herein, we present a >99% (E)-stereoselective one-pot synthetic approach towards β-phosphoroxylated α,β-unsaturated esters via a mild trimethylamine-catalyzed 1,3-hydrogen migration of the corresponding unconjugated intermediates derived from the solvent-free Perkow reaction between low-cost 4-chloroacetoacetates and phosphites. Versatile β,β-disubstituted (E)-α,β-unsaturated esters were thus afforded with full (E)-stereoretentivity by cleavage of the phosphoenol linkage via Negishi cross-coupling. Moreover, a stereoretentive (E)-rich mixture of a α,β-unsaturated ester derived from 2-chloroacetoacetate was obtained and both isomers were easily afforded in one operation.
Project description:The ruthenium-hydride complex (PCy(3))(2)(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH(2)Cl(2) led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy(3). The coupling reaction of both PhCO(2)H/PhC identical withCD and PhCO(2)D/PhC identical withCH led to the extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C(6)H(4)CO(2)H (X = OMe, CH(3), H, CF(3), CN) with phenylacetylene was examined in CDCl(3) (rho = +0.30) and THF (rho = -0.68). Catalytically relevant Ru-carboxylate and -vinylidene-carboxylate complexes, (PCy(3))(2)(CO)(Cl)Ru(kappa(2)-O(2)CC(6)H(4)-p-OMe) and (PCy(3))(2)(CO)(Cl)RuC(=CHPh)O(2)CC(6)H(4)-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C-O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH(2)Cl(2) was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species.
Project description:An interesting silver(I)-catalyzed, one-pot intramolecular cyclization of epoxide-propargylic esters is described. A variety of 1,4-oxazine derivatives were obtained through a novel domino sequence, including three-membered ring-opening, 3,3-sigmatropic rearrangement, 6-exo-cycloisomerization and subsequent intramolecular elimination in moderate yields under mild conditions.
Project description:The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to the Brønsted acid itself depending on the reaction temperature.