Project description:Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.
Project description:Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values >or= 95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.
Project description:The tuberactinomycin antibiotics are essential components in the drug arsenal against Mycobacterium tuberculosis infections and are specifically used for the treatment of multidrug-resistant tuberculosis. These antibiotics are also being investigated for their targeting of the catalytic RNAs involved in viral replication and for the treatment of bacterial infections caused by methicillin-resistant Staphylococcus aureus strains and vancomycin-resistant enterococci. We report on the isolation, sequencing, and annotation of the biosynthetic gene cluster for one member of this antibiotic family, viomycin, from Streptomyces sp. strain ATCC 11861. This is the first gene cluster for a member of the tuberactinomycin family of antibiotics sequenced, and the information gained can be extrapolated to all members of this family. The gene cluster covers 36.3 kb of DNA and encodes 20 open reading frames that we propose are involved in the biosynthesis, regulation, export, and activation of viomycin, in addition to self-resistance to the antibiotic. These results enable us to predict the metabolic logic of tuberactinomycin production and begin steps toward the combinatorial biosynthesis of these antibiotics to complement existing chemical modification techniques to produce novel tuberactinomycin derivatives.
Project description:The fungal kingdom has provided advances in our ability to identify biosynthetic gene clusters (BGCs) and to examine how gene composition of BGCs evolves across species and genera. However, little is known about the evolution of specific BGC regulators that mediate how BGCs produce secondary metabolites (SMs). A bioinformatics search for conservation of the Aspergillus fumigatus xanthocillin BGC revealed an evolutionary trail of xan-like BGCs across Eurotiales species. Although the critical regulatory and enzymatic genes were conserved in Penicillium expansum, overexpression (OE) of the conserved xan BGC transcription factor (TF) gene, PexanC, failed to activate the putative xan BGC transcription or xanthocillin production in P. expansum, in contrast to the role of AfXanC in A. fumigatus. Surprisingly, OE::PexanC was instead found to promote citrinin synthesis in P. expansum via trans induction of the cit pathway-specific TF, ctnA, as determined by cit BGC expression and chemical profiling of ctnA deletion and OE::PexanC single and double mutants. OE::AfxanC results in significant increases of xan gene expression and metabolite synthesis in A. fumigatus but had no effect on either xanthocillin or citrinin production in P. expansum. Bioinformatics and promoter mutation analysis led to the identification of an AfXanC binding site, 5'-AGTCAGCA-3', in promoter regions of the A. fumigatus xan BGC genes. This motif was not in the ctnA promoter, suggesting a different binding site of PeXanC. A compilation of a bioinformatics examination of XanC orthologs and the presence/absence of the 5'-AGTCAGCA-3' binding motif in xan BGCs in multiple Aspergillus and Penicillium spp. supports an evolutionary divergence of XanC regulatory targets that we speculate reflects an exaptation event in the Eurotiales. IMPORTANCE Fungal secondary metabolites (SMs) are an important source of pharmaceuticals on one hand and toxins on the other. Efforts to identify the biosynthetic gene clusters (BGCs) that synthesize SMs have yielded significant insights into how variation in the genes that compose BGCs may impact subsequent metabolite production within and between species. However, the role of regulatory genes in BGC activation is less well understood. Our finding that the bZIP transcription factor XanC, located in the xanthocillin BGC of both Aspergillus fumigatus and Penicillium expansum, has functionally diverged to regulate different BGCs in these two species emphasizes that the diversification of BGC regulatory elements may sometimes occur through exaptation, which is the co-option of a gene that evolved for one function to a novel function. Furthermore, this work suggests that the loss/gain of transcription factor binding site targets may be an important mediator in the evolution of secondary-metabolism regulatory elements.
Project description:Plants are master chemists and collectively are able to produce hundreds of thousands of different organic compounds. The genes underlying the biosynthesis of many specialized metabolites are organized in biosynthetic gene clusters (BGCs), which is hypothesized to ensure their faithful coinheritance and to facilitate their coordinated expression. In rice (Oryza sativa), momilactones are diterpenoids that act in plant defence and various organismic interactions. Many of the genes essential for momilactone biosynthesis are grouped in a BGC. We applied comparative genomics of diploid and allotetraploid Oryza species to reconstruct the species-specific architecture, evolutionary trajectory, and sub-functionalisation of the momilactone biosynthetic gene cluster (MBGC) in the Oryza genus. Our data show that the evolution of the MBGC is marked by lineage-specific rearrangements and gene copy number variation, as well as by occasional cluster loss. We identified a distinct cluster architecture in Oryza coarctata, which represents the first instance of an alternative architecture of the MBGC in Oryza and strengthens the idea of a common origin of the cluster in Oryza and the distantly related genus Echinochloa. Our research illustrates the evolutionary and functional dynamics of a biosynthetic gene cluster within a plant genus.
Project description:Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites that have been identified in multiple grass species and are encoded by the Bx biosynthetic gene cluster (BGC) in maize. Data mining of 41 high-quality grass genomes identified complete Bx clusters (containing genes Bx1-Bx5 and Bx8) in three genera (Zea, Echinochloa, and Dichanthelium) of Panicoideae and partial clusters in Triticeae. The Bx cluster probably originated from gene duplication and chromosomal translocation of native homologs of Bx genes. An ancient Bx cluster that included additional Bx genes (e.g., Bx6) is presumed to have been present in ancestral Panicoideae. The ancient Bx cluster was putatively gained by the Triticeae ancestor via horizontal transfer (HT) from the ancestral Panicoideae and later separated into multiple segments on different chromosomes. Bx6 appears to have been under less constrained selection compared with the Bx cluster during the evolution of Panicoideae, as evidenced by the fact that it was translocated away from the Bx cluster in Zea mays, moved to other chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigations indicate that purifying selection and polyploidization have shaped the evolutionary trajectory of Bx clusters in the grass family. This study provides the first candidate case of HT of a BGC between plants and sheds new light on the evolution of BGCs.
Project description:Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. The cin cluster contains many genes not found in lantibiotic clusters from low G+C Gram-positive bacteria, including a Streptomyces antibiotic regulatory protein regulatory gene, and lacks others found in such clusters, such as a LanT-type transporter and a LanP-type protease. Transfer of the cin cluster to Streptomyces lividans resulted in heterologous production of cinnamycin. Furthermore, modification of the cinnamycin structural gene (cinA) led to production of two naturally occurring lantibiotics, duramycin and duramycin B, closely resembling cinnamycin, whereas attempts to make a more widely diverged derivative, duramycin C, failed to generate biologically active material. These results provide a basis for future attempts to construct extensive libraries of cinnamycin variants.
Project description:Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation.
Project description:A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the beta-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis.
Project description:BackgroundPamamycins are a family of highly bioactive macrodiolide polyketides produced by Streptomyces alboniger as a complex mixture of derivatives with molecular weights ranging from 579 to 705 Daltons. The large derivatives are produced as a minor fraction, which has prevented their isolation and thus studies of chemical and biological properties.ResultsHerein, we describe the transcriptional engineering of the pamamycin biosynthetic gene cluster (pam BGC), which resulted in the shift in production profile toward high molecular weight derivatives. The pam BGC library was constructed by inserting randomized promoter sequences in front of key biosynthetic operons. The library was expressed in Streptomyces albus strain with improved resistance to pamamycins to overcome sensitivity-related host limitations. Clones with modified pamamycin profiles were selected and the properties of engineered pam BGC were studied in detail. The production level and composition of the mixture of pamamycins was found to depend on balance in expression of the corresponding biosynthetic genes. This approach enabled the isolation of known pamamycins and the discovery of three novel derivatives with molecular weights of 663 Da and higher. One of them, homopamamycin 677A, is the largest described representative of this family of natural products with an elucidated structure. The new pamamycin 663A shows extraordinary activity (IC50 2 nM) against hepatocyte cancer cells as well as strong activity (in the one-digit micromolar range) against a range of Gram-positive pathogenic bacteria.ConclusionBy employing transcriptional gene cluster refactoring, we not only enhanced the production of known pamamycins but also discovered novel derivatives exhibiting promising biological activities. This approach has the potential for broader application in various biosynthetic gene clusters, creating a sustainable supply and discovery platform for bioactive natural products.