Correction: Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.
Correction: Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.
Project description:Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.
Project description:RNA interference (RNAi), the process that results in the degradation of a target gene's mRNA, is a fundamental part of eukaryotic gene regulation and is also an important molecular technique that allows for experimental manipulation of gene expression without altering DNA sequences. Despite the importance of RNAi, there have been relatively few lecture-based activities designed to teach about the consequences of this process and counter common misconceptions. I present here an inquiry-based activity that is centered around a "choose your own experiment" design where students generate hypotheses and critically evaluate their ideas by choosing several simulated experiments. The activity presents students with one of the original puzzling observations, the discovery that triggering overexpression of a given gene in a flower resulted in an opposite change in phenotype than expected, and the subsequent discovery that there was a dramatic decrease of that gene's mRNA, that sparked the discovery of RNAi. Students then propose a molecular mechanism for these results before using a limited budget of funding to simulate their choice of experiments. Simulated results are provided for these experiments, and students must work together to interpret and discuss these results before deciding on the next experiment. I provide a guide for instructors on how to implement this activity, with suggestions on how to vary the activity to fit different class sizes as well as an abbreviated version for instructors who are short on time. Finally, I include an aligned assessment so that instructors may check student learning about the impacts of RNAi.
Project description:We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.
Project description:Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.
Project description:Public and scientific consensus about climate change do not align. Problematically, higher scientific knowledge has been associated with lower acceptance of climate information among those with more conservative socio-political ideologies. Positive attitudes towards science can attenuate this effect. We investigated the association between endorsement of scientific inquiry (ESI) and decision-making with scientific evidence about climate policies. Participants rated support for 16 climate policies accompanied by weaker or stronger evidence. In study 1 (N = 503), higher ESI was associated with greater discernment between strongly and weakly evidenced climate policies, irrespective of worldview. In studies 2 (N = 402) and 3 (N = 600), an ESI intervention improved discrimination, and, in study 3, increased ESI specifically for hierarchical/individualistic participants. Unlike ESI, the link between scientific knowledge and evaluation of evidence was influenced by worldview. Increasing ESI might improve the evaluation of scientific evidence and increase public support for evidence-based climate policies. Supplementary Information The online version contains supplementary material available at 10.1007/s10584-023-03535-y.
Project description:There is common agreement that preschool-level science education affects children's curiosity, their positive approach toward science, and their desire to engage with the subject. Children's natural curiosity drives them to engage enthusiastically in all forms of exploration. Engaging in scientific exploration necessitates self-regulation capabilities and a wide repertoire of cognitive and metacognitive strategies. The purpose of this study was to examine to what extent preschoolers (aged 5-6 years) implement nascent inquiry skills, metacognitive awareness, and self-regulation capabilities during play-based scientific exploration tasks. An additional purpose was to investigate the relationships between these capabilities, a relationship not yet investigated in the context of play-based, scientific exploration among young children. The study consisted of 215 preschoolers, from 10 preschools. For this study, we developed two scientific exploration tasks - structured and open-ended. Our motivation was to examine whether preschoolers' capabilities will differ in the context of structured task which is aligned with the view that young children need guidance and explicit instructions compared to the context of open-ended, play-based task-allowing the children to apply and test their intuitive theories and skills. During performance participants were videotaped. Their verbal and non-verbal responses were analyzed by means of a coding scheme. The results of a micro-analysis of about 100 h of video showed that given the opportunity, even without setting explicit goals and instructions, children exhibit inquiry capabilities: they ask questions, plan, hypothesize, use tools, draw conclusions. Asking questions and planning were better manifested during the structured task. Children also manifested higher levels of attention, persistence, and autonomy during the structured task. However, significant higher scores of self-regulation indications were revealed in the context of the open-ended, play-based, exploration task. Moreover, results indicate significant correlations between the five measures of preschoolers' inquiry capabilities and measures of metacognitive strategic awareness and self-regulation. The results of the present study suggest the importance of combining various learning environments and experiences in early science education that encourage children to engage in structured exploration alongside play-based, open-ended, exploration.
Project description:Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.