Unknown

Dataset Information

0

Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.


ABSTRACT: Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce the Foxc1 transcription factor when activated. Deleting Foxc1 in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. Deleting Foxc1 in the SC niche of gene-targeted mice leads to loss of the old hair without impairing quiescence. In self-renewing SCs, Foxc1 activates Nfatc1 and bone morphogenetic protein (BMP) signaling, two key mechanisms that govern quiescence. These findings reveal a dynamic, cell-intrinsic mechanism used by hair follicle SCs to reinforce quiescence upon self-renewal and suggest a unique ability of SCs to maintain cell identity.

SUBMITTER: Wang L 

PROVIDER: S-EPMC4828140 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.

Wang Li L   Siegenthaler Julie A JA   Dowell Robin D RD   Yi Rui R  

Science (New York, N.Y.) 20160201 6273


Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce the Foxc1 transcription factor when activated. Deleting Foxc1 in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. Deleting Foxc1 in the SC niche of gene-targeted mice leads t  ...[more]

Similar Datasets

2016-02-05 | E-GEOD-67404 | biostudies-arrayexpress
2016-02-05 | GSE67404 | GEO
| S-EPMC8016723 | biostudies-literature
2021-04-14 | GSE162333 | GEO
| S-EPMC3754479 | biostudies-literature
| S-EPMC5242381 | biostudies-literature
| S-EPMC5736337 | biostudies-literature