Project description:Unresolved inflammation is central to the pathophysiology of commonly occurring vascular diseases such as atherosclerosis, aneurysm, and deep vein thrombosis - conditions that are responsible for considerable morbidity and mortality. Surgical or catheter-based procedures performed on affected blood vessels induce acute-on-chronic inflammatory responses. The resolution of vascular inflammation is an important driver of vessel wall remodeling and functional recovery in these clinical settings. Specialized pro-resolving lipid mediators (SPMs) derived from omega-3 polyunsaturated fatty acids orchestrate key cellular processes driving resolution and a return to homeostasis. The identification of their potent effects in classic animal models of sterile inflammation triggered interest in their vascular properties. Recent studies have demonstrated that SPMs are locally synthesized in vascular tissues, have direct effects on vascular cells and their interactions with leukocytes, and play a protective role in the injury response. Early translational work has established the potential for SPMs as vascular therapeutics, and as candidate biomarkers in vascular disease. Further investigations are needed to understand the molecular and cellular mechanisms of resolution in the vasculature, to improve tools for clinical measurement, and to better define the potential for "resolution therapeutics" in vascular patients.
Project description:Psoriasis is an inflammatory skin disease associated with increased cardiovascular risk and serves as a reliable model to study inflammatory atherogenesis. Because neutrophils are implicated in atherosclerosis development, this study reports that the interaction among low-density granulocytes, a subset of neutrophils, and platelets is associated with a noncalcified coronary plaque burden assessed by coronary computed tomography angiography. Because early atherosclerotic noncalcified burden can lead to fatal myocardial infarction, the low-density granulocyte-platelet interaction may play a crucial target for clinical intervention.
Project description:In the eye, goblet cells responsible for secreting mucins are found in the conjunctiva. When mucin production is not tightly regulated several ocular surface disorders may occur. In this study, the effect of the T helper (Th) 2-type cytokines IL4, IL5, and IL13 on conjunctival goblet cell function was explored. Goblet cells from rat conjunctiva were cultured and characterized. The presence of cytokine receptors was confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Changes in intracellular [Ca2+], high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with Th2 cytokines with or without the allergic mediator histamine. We found that IL4 and IL13 enhance cell proliferation and, along with histamine, stimulate goblet cell secretion. We conclude that the high levels of IL4, IL5, and IL13 that characterize allergic conjunctivitis could be the reason for higher numbers of goblet cells and mucin overproduction found in this condition.
Project description:Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Project description:Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.
Project description:Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
Project description:Platelets are most recognized for their vital role as the cellular mediator of thrombosis, but platelets also have important immune functions. Platelets initiate and sustain vascular inflammation in many disease conditions, including arthritis, atherosclerosis, transplant rejection, and severe malaria. We now demonstrate that platelets express T cell costimulatory molecules, process and present Ag in MHC class I, and directly activate naive T cells in a platelet MHC class I-dependent manner. Using an experimental cerebral malaria mouse model, we also demonstrate that platelets present pathogen-derived Ag to promote T cell responses in vivo, and that platelets can be used in a cell-based vaccine model to induce protective immune responses. Our study demonstrates a novel Ag presentation role for platelets.
Project description:Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key thromboinflammatory activities in a variety of vascular disorders and vasculopathies. Recently identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases.
Project description:Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.
Project description:Background:Siderophores are major virulent factors of K. pneumoniae, and their roles are iron chelators in the host. Several studies have shown that iron chelation could result in mitochondrial dysfunction and increase the production of reactive oxygen species (ROS), which further induces cell mitophagy and apoptosis. However, the impacts of siderophores on platelets are still unknown. Methods:We obtained platelets of healthy volunteers to perform in vitro experiments in our study and treated platelets with different siderophores. Mitophagy related proteins (TOMM20, TIMM23, LC3, and p62), signal proteins (PINK1/Parkin and BNIP3), and apoptosis protein (caspase3) in platelets were analyzed by western blot. The co-localization of mitotracker with LC3-II was analyzed by immunofluorescence assays. The flow cytometer was used to evaluate ROS levels. Results:All four kinds of siderophores (10 ?M) secreted by K. pneumoniae increased the expression of LC3 II and reduced the expression of mitochondrial membrane protein, TOMM20, and TIMM23. Immunofluorescence assays revealed that the treatment of enterobactin significantly increased the co-localization of mitotracker with LC3-II. All four kinds of siderophores increased the ROS level in platelets. Mitophagy of platelets was activated through several pathways, including PINK1/Parkin- and BNIP3-dependent pathways. We also proved that siderophores increased the expression of caspase3 in platelets, and the expression of caspase3 significantly decreased after the pathways of mitophagy were blocked. Conclusions:K. pneumoniae siderophores lead to mitophagy in platelets, and mitophagy further induces apoptosis, which may be a potential treatment of thrombocytopenia in infections.