Project description:Planar pore-spanning membranes (PSMs) have been shown to be a versatile tool to resolve elementary steps of the neuronal fusion process. However, in previous studies, we monitored only lipid mixing between fusing large unilamellar vesicles and PSMs and did not gather information about the formation of fusion pores. To address this important step of the fusion process, we entrapped sulforhodamine B at self-quenching concentrations into large unilamellar vesicles containing the v-SNARE synaptobrevin 2, which were docked and fused with lipid-labeled PSMs containing the t-SNARE acceptor complex ΔN49 prepared on gold-coated porous silicon substrates. By dual-color spinning disk fluorescence microscopy with a time resolution of ∼20 ms, we could unambiguously distinguish between bursting vesicles, which was only rarely observed (<0.01%), and fusion pore formation. From the time-resolved dual-color fluorescence time traces, we were able to identify different fusion pathways, including remaining three-dimensional postfusion structures with released content and transient openings and closings of the fusion pores. Our results on fusion pore formation and lipid diffusion from the PSM into the fusing vesicle let us conclude that the content release, i.e., fusion pore formation after the merger of the two lipid membranes occurs almost simultaneously.
Project description:Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.
Project description:During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.
Project description:Ca(2+)-dependent regulation of fusion pore dilation and closure is a key mechanism determining the output of cellular secretion. We have recently described 'fusion-activated' Ca(2+) entry (FACE) following exocytosis of lamellar bodies in alveolar type II cells. FACE regulates fusion pore expansion and facilitates secretion. However, the mechanisms linking this locally restricted Ca(2+) signal and fusion pore expansion were still elusive. Here, we demonstrate that synaptotagmin-7 (Syt7) is expressed on lamellar bodies and links FACE and fusion pore dilation. We directly assessed dynamic changes in fusion pore diameters by analysing diffusion of fluorophores across fusion pores. Expressing wild-type Syt7 or a mutant Syt7 with impaired Ca(2+)-binding to the C2 domains revealed that binding of Ca(2+) to the C2A domain facilitates FACE-induced pore dilation, probably by inhibiting translocation of complexin-2 to fused vesicles. However, the C2A domain hampered Ca(2+)-dependent exocytosis of lamellar bodies. These findings support the hypothesis that Syt7 modulates fusion pore expansion in large secretory organelles and extend our picture that lamellar bodies contain the necessary molecular inventory to facilitate secretion during the exocytic post-fusion phase. Moreover, regulating Syt7 levels on lamellar bodies appears to be essential in order that exocytosis is not impeded during the pre-fusion phase.
Project description:Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus-liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of 'leaky' fusion to the observed prefusion structures is discussed.
Project description:Exocytic post-fusion events play an important role determining the composition and quantity of cellular secretion. In particular, Ca(2+)-dependent regulation of fusion pore dilation/closure is a key regulator for fine-tuning vesicle content secretion. This requires a tight temporal and spatial integration of vesicle fusion with the PM, Ca(2+) signals and translation of the Ca(2+) signal into fusion pore dilation via auxiliary factors. Yet, it is still mostly elusive how this is achieved in slow and non-excitable secretory cells, where initial Ca(2+) signals triggering fusions will abate before onset of the post-fusion phase. New results suggest, that the vesicles themselves provide the necessary itinerary to sense and link vesicle fusion to generation of local Ca(2+) signals and fusion pore expansion.
Project description:It is often assumed that upon fusion of the secretory granule membrane with the plasma membrane, lumenal contents are rapidly discharged and dispersed into the extracellular medium. Although this is the case for low-molecular-weight neurotransmitters and some proteins, there are numerous examples of the dispersal of a protein being delayed for many seconds after fusion. We have investigated the role of fusion-pore expansion in determining the contrasting discharge rates of fluorescent-tagged neuropeptide-Y (NPY) (within 200 ms) and tissue plasminogen activator (tPA) (over many seconds) in adrenal chromaffin cells. The endogenous proteins are expressed in separate chromaffin cell subpopulations. Fusion pore expansion was measured by two independent methods, orientation of a fluorescent probe within the plasma membrane using polarized total internal reflection fluorescence microscopy and amperometry of released catecholamine. Together, they probe the continuum of the fusion-pore duration, from milliseconds to many seconds after fusion. Polarized total internal reflection fluorescence microscopy revealed that 71% of the fusion events of tPA-cer-containing granules maintained curvature for >10 s, with approximately half of the structures likely connected to the plasma membrane by a short narrow neck. Such events were not commonly observed upon fusion of NPY-cer-containing granules. Amperometry revealed that the expression of tPA-green fluorescent protein (GFP) prolonged the duration of the prespike foot ∼2.5-fold compared to NPY-GFP-expressing cells and nontransfected cells, indicating that expansion of the initial fusion pore in tPA granules was delayed. The t1/2 of the main catecholamine spike was also increased, consistent with a prolonged delay of fusion-pore expansion. tPA added extracellularly bound to the lumenal surface of fused granules. We propose that tPA within the granule lumen controls its own discharge. Its intrinsic biochemistry determines not only its extracellular action but also the characteristics of its presentation to the extracellular milieu.
Project description:Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-μs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.
Project description:The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease. Like that of other proteins that accumulate in neurodegenerative disease, however, the function of α-synuclein remains unknown. Localization to the nerve terminal suggests a role in neurotransmitter release, and overexpression inhibits regulated exocytosis, but previous work has failed to identify a clear physiological defect in mice lacking all three synuclein isoforms. Using adrenal chromaffin cells and neurons, we now find that both overexpressed and endogenous synuclein accelerate the kinetics of individual exocytotic events, promoting cargo discharge and reducing pore closure ('kiss-and-run'). Thus, synuclein exerts dose-dependent effects on dilation of the exocytotic fusion pore. Remarkably, mutations that cause Parkinson's disease abrogate this property of α-synuclein without impairing its ability to inhibit exocytosis when overexpressed, indicating a selective defect in normal function.
Project description:α-Synuclein (α-synFL) is central to the pathogenesis of Parkinson's disease (PD), in which its nonfunctional oligomers accumulate and result in abnormal neurotransmission. The normal physiological function of this intrinsically disordered protein is still unclear. Although several previous studies demonstrated α-synFL's role in various membrane fusion steps, they produced conflicting outcomes regarding vesicular secretion. Here, we assess α-synFL's role in directly regulating individual exocytotic release events. We studied the micromillisecond dynamics of single recombinant fusion pores, the crucial kinetic intermediate of membrane fusion that tightly regulates the vesicular secretion in different cell types. α-SynFL accessed v-SNARE within the trans-SNARE complex to form an inhibitory complex. This activity was dependent on negatively charged phospholipids and resulted in decreased open probability of individual pores. The number of trans-SNARE complexes influenced α-synFL's inhibitory action. Regulatory factors that arrest SNARE complexes in different assembly states differentially modulate α-synFL's ability to alter fusion pore dynamics. α-SynFL regulates pore properties in the presence of Munc13-1 and Munc18, which stimulate α-SNAP/NSF-resistant SNARE complex formation. In the presence of synaptotagmin1(syt1), α-synFL contributes with apo-syt1 to act as a membrane fusion clamp, whereas Ca2+•syt1 triggered α-synFL-resistant SNARE complex formation that rendered α-synFL inactive in modulating pore properties. This study reveals a key role of α-synFL in controlling vesicular secretion.