Project description:Numerous advances and innovative therapies have been introduced in interventional cardiology over the recent years, since the first introduction of balloon angioplasty, but bioresorbable scaffold is certainly one of the most exciting and attracting one. Despite the fact that the metallic drug-eluting stents have significantly diminished the re-stenosis ratio, they have considerable limitations including the hypersensitivity reaction to the polymer that can cause local inflammation, the risk of neo-atherosclerotic lesion formation which can lead to late stent failure as well as the fact that they may preclude surgical revascularization and distort vessel physiology. Bioresorbable scaffolds overcome these limitations as they have the ability to dissolve after providing temporary scaffolding which safeguards vessel patency. In this article we review the recent developments in the field and provide an overview of the devices and the evidence that support their efficacy in the treatment of CAD. Currently 3 devices are CE marked and in clinical use. Additional 24 companies are developing these kind of coronary devices. Most frequently used material is PLLA followed by magnesium.
Project description:As one of the most stunning biological nanostructures, the single-diamond (SD) surface discovered in beetles and weevils exoskeletons possesses the widest complete photonic bandgap known to date and is renowned as the "holy grail" of photonic materials. However, the synthesis of SD is difficult due to its thermodynamical instability compared to the energetically favoured bicontinuous double diamond and other easily formed lattices; thus, the artificial fabrication of SD has long been a formidable challenge. Herein, we report a bottom-up approach to fabricate SD titania networks via a one-pot cooperative assembly scenario employing the diblock copolymer poly(ethylene oxide)-block-polystyrene as a soft template and titanium diisopropoxide bis(acetylacetonate) as an inorganic precursor in a mixed solvent, in which the SD scaffold was obtained by kinetically controlled nucleation and growth in the skeletal channels of the diamond minimal surface formed by the polymer matrix. Electron crystallography investigations revealed the formation of tetrahedrally connected SD frameworks with the space group Fd [Formula: see text] m in a polycrystalline anatase form. A photonic bandgap calculation showed that the resulting SD structure has a wide and complete bandgap. This work solves the complex synthetic enigmas and offers a frontier in hyperbolic surfaces, biorelevant materials, next-generation optical devices, etc.
Project description:UnlabelledInnovations in drug-eluting stents (DES) have substantially reduced rates of in-segment restenosis and early stent thrombosis, improving clinical outcomes following percutaneous coronary interventions (PCI). However a fixed metallic implant in a vessel wall with restored patency and residual disease remains a precipitating factor for sustained local inflammation, in-stent neo-atherosclerosis and impaired vasomotor function increasing the risk for late complications attributed to late or very late stent thrombosis and late target lesion revascularization (TLR) (late catch-up). The quest for optimal coronary stenting continues by further innovations in stent design and by using biocompatible materials other than cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding, local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics have been recently developed. These devices have been utilized in selected clinical applications so far providing preliminary evidence of safety showing comparable performance with current generation drug-eluting stents (DES). Herein we provide a comprehensive overview of the current status of these technologies, we elaborate on the potential benefits of transient coronary scaffolds over permanent stents in the context of vascular reparation therapy, and we further focus on the evolving challenges these devices have to overcome to compete with current generation DES.Condensed abstract: The quest for optimizing percutaneous coronary interventions continues by iterative innovations in device materials beyond cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding; local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics were recently developed. These devices have been utilized in selected clinical applications providing preliminary evidence of safety showing comparable intermediate term clinical outcomes with current generation drug-eluting stents.
Project description:Stress echocardiography (SE) is a very useful method in clinical practice, because it offers important information of both the patient's functional status and hemodynamic changes during stress. Therefore, SE provides strong diagnostic and prognostic data in a wide spectrum of cardiovascular diseases. This review summarizes the clinical applications of SE in conditions beyond coronary artery disease (CAD) and highlights practical recommendations and key issues for each condition that need further investigation. SE is an established method for the evaluation of symptomatic and asymptomatic patients with valvular heart disease (VHD) and cardiomyopathies, and provides important information regarding prognosis and management of patients with congenital heart disease, pulmonary hypertension or diastolic dysfunction. Moreover, when one or multiple VHD and cardiomyopathy or CAD coexist in one patient, SE is a very useful clinical tool for the evaluation of etiology and symptomatology.
Project description:At present, there is no cure for asthma, and treatment typically involves therapies that prevent or reduce asthma symptoms, without modifying the underlying disease. A "disease-modifying" treatment can be classed as able to address the pathogenesis of a disease, preventing progression or leading to a long-term reduction in symptoms. Such therapies have been investigated and approved in other indications, e.g. rheumatoid arthritis and immunoglobulin E-mediated allergic disease. Asthma's heterogeneous nature has made the discovery of similar therapies in asthma more difficult, although novel therapies (e.g. biologics) may have the potential to exhibit disease-modifying properties. To investigate the disease-modifying potential of a treatment, study design considerations can be made, including: appropriate end-point selection, length of trial, age of study population (key differences between adults/children in physiology, pathology and drug metabolism) and comorbidities in the patient population. Potential future focus areas for disease-modifying treatments in asthma include early assessments (e.g. to detect patterns of remodelling) and interventions for patients genetically susceptible to asthma, interventions to prevent virally induced asthma and therapies to promote a healthy microbiome. This review explores the pathophysiology of asthma, the disease-modifying potential of current asthma therapies and the direction future research may take to achieve full disease remission or prevention.
Project description:RAS GTPases (H-, K-, and N-RAS) are the most frequently mutated oncoprotein family in human cancer. However, the relatively smooth surface architecture of RAS and its picomolar affinity for nucleotide have given rise to the assumption that RAS is an "undruggable" target. Recent advancements in drug screening, molecular modeling, and a greater understanding of RAS function have led to a resurgence in efforts to pharmacologically target this challenging foe. This review focuses on the state of the art of RAS inhibition, the approaches taken to achieve this goal, and the challenges of translating these discoveries into viable therapeutics.
Project description:The management of patients with significant in-stent restenosis (ISR) with drug-eluting stent is still not well defined. Various treatment modalities include plain old balloon angioplasty (POBA), metallic stent, cutting or scoring balloon and drug-eluting balloon (DEB). Bioresorbable vascular scaffold (BVS) is the latest technology for the treatment of de novo coronary artery lesions. The use of BVS in ISR is based on the rationale of local drug delivery as achieved by DEB without the permanent bi-layer of metal and also stabilizes dissection flaps and prevents acute recoil as provided by metallic stent. To the best of our knowledge this is the first case report of the use of BVS in patient with ISR.