Project description:Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.
Project description:Practice makes perfect in almost all perceptual tasks, but how perceptual improvements accumulate remains unknown. Here, we developed a multicomponent theoretical framework to model contributions of both long- and short-term processes in perceptual learning. Applications of the framework to the block-by-block learning curves of 49 adult participants in seven perceptual tasks identified ubiquitous long-term general learning and within-session relearning in most tasks. More importantly, we also found between-session forgetting in the vernier-offset discrimination, face-view discrimination, and auditory-frequency discrimination tasks; between-session off-line gain in the visual shape search task; and within-session adaptation and both between-session forgetting and off-line gain in the contrast detection task. The main results of the vernier-offset discrimination and visual shape search tasks were replicated in a new experiment. The multicomponent model provides a theoretical framework to identify component processes in perceptual learning and a potential tool to optimize learning in normal and clinical populations.
Project description:ObjectiveExamine whether long- and short-term sunlight radiation is related to stroke incidence.MethodsFifteen-year residential histories merged with satellite, ground monitor, and model reanalysis data were used to determine sunlight radiation (insolation) and temperature exposure for a cohort of 16,606 stroke and coronary artery disease-free black and white participants aged ≥45 years from the 48 contiguous United States. Fifteen-, 10-, 5-, 2-, and 1-year exposures were used to predict stroke incidence during follow-up in Cox proportional hazard models. Potential confounders and mediators were included during model building.ResultsShorter exposure periods exhibited similar, but slightly stronger relationships than longer exposure periods. After adjustment for other covariates, the previous year's monthly average insolation exposure below the median gave a hazard ratio (HR) of 1.61 (95% confidence interval [CI], 1.15-2.26), and the previous year's highest compared to the second highest quartile of monthly average maximum temperature exposure gave an HR of 1.92 (95%, 1.27-2.92).InterpretationThese results indicate a relationship between lower levels of sunlight radiation and higher stroke incidence. The biological pathway of this relationship is not clear. Future research will show whether this finding stands, the pathway for this relationship, and whether it is due to short- or long-term exposures.
Project description:Revealing temporal patterns of community assembly processes is important for understanding how microorganisms underlie the sustainability of agroecosystem. The ancient terraced rice paddies at Longji provide an ideal platform to study temporal dynamics of agroecosystem sustainability due to their chronosequential records of soil physicochemistry and well-archived microbial information along 630-year rice cultivation. We used statistical null models to evaluate microbial assembly processes along the soil chronosequences of Longji rice paddies through time. Stochastic and deterministic assembly processes jointly governed microbial community composition within successional eras (less than 250 years), and within-era determinism was mainly driven by soil fertility and redox conditions alone or in combination. Conversely, across successional eras (i.e., over 300 years), stochasticity linearly increased with increasing duration between eras and was eventually predominant for the whole 630 years. We suggest that the impact of stochasticity vs. determinism on assembly is timescale-dependent, and we propose that the importance of stochastic assembly of microbial community at longer timescales is due to the gradual changes in soil properties under long-term rice cultivation, which in turn contribute to the sustainability of paddy ecosystem by maintaining a diverse community of microorganisms with multi-functional traits. In total, our results indicate that knowledge on the timescales at which assembly processes govern microbial community composition is key to understanding the ecological mechanisms generating agroecosystem sustainability.
Project description:Aging refers to the processes by which the bioavailability/toxicity, isotopic exchangeability, and extractability of metals added to soils decline overtime. We studied the characteristics of the aging process in copper (Cu) added to soils and the factors that affect this process. Then we developed a semi-mechanistic model to predict the lability of Cu during the aging process with descriptions of the diffusion process using complementary error function. In the previous studies, two semi-mechanistic models to separately predict short-term and long-term aging of Cu added to soils were developed with individual descriptions of the diffusion process. In the short-term model, the diffusion process was linearly related to the square root of incubation time (t1/2), and in the long-term model, the diffusion process was linearly related to the natural logarithm of incubation time (lnt). Both models could predict short-term or long-term aging processes separately, but could not predict the short- and long-term aging processes by one model. By analyzing and combining the two models, we found that the short- and long-term behaviors of the diffusion process could be described adequately using the complementary error function. The effect of temperature on the diffusion process was obtained in this model as well. The model can predict the aging process continuously based on four factors-soil pH, incubation time, soil organic matter content and temperature.
Project description:High spatial resolution, low background, and deep tissue penetration have made near-infrared II (NIR-II) fluorescence imaging one of the most critical tools for in vivo observation and measurement. However, the relatively short retention time and potential toxicity of synthetic NIR-II fluorophores limit their long-term application. Here, we report the use of infrared fluorescent proteins (iRFPs) as in vitro and in vivo NIR-II probes permitting prolonged continuous imaging (up to 15 months). As a representative example, iRFP713 is knocked into the mouse genome to generate a transgenic model to allow temporal and/or spatial expression control of the probe. To demonstrate its feasibility in a genuine diagnostic context, we adopt two liver regeneration models and successfully track the process for a week. The performance and monitoring efficacy are comparable to those of μCT and superior to those of indocyanine green dye. We are also able to effectively observe the pancreas, despite its deep location, under both physiological and pathological conditions. These results indicate that the iRFP-assisted NIR-II fluorescence system is suitable for monitoring various tissues and in vivo biological processes, providing a powerful noninvasive long-term imaging platform.
Project description:Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.
Project description:SAR11 bacteria dominate the surface ocean and are major players in converting fixed carbon back to atmospheric carbon dioxide. The SAR11 clade is comprised of niche-specialized ecotypes that display distinctive spatiotemporal transitions. We analyzed SAR11 ecotype seasonality in two long-term 16S rRNA amplicon time series representing different North Atlantic regimes: the Sargasso Sea (subtropical ocean-gyre; BATS) and the temperate coastal Western English Channel (WEC). Using phylogenetically resolved amplicon sequence variants (ASVs), we evaluated seasonal environmental constraints on SAR11 ecotype periodicity. Despite large differences in temperature and nutrient availability between the two sites, at both SAR11 succession was defined by summer and winter clusters of ASVs. The summer cluster was dominated by ecotype Ia.3 in both sites. Winter clusters were dominated by ecotypes Ib and IIa.A at BATS and Ia.1 and IIa.B at WEC. A 2-year weekly analysis within the WEC time series showed that the response of SAR11 communities to short-term environmental fluctuations was variable. In 2016, community shifts were abrupt and synchronized to environmental shifts. However, in 2015, changes were gradual and decoupled from environmental fluctuations, likely due to increased mixing from strong winds. We demonstrate that interannual weather variability disturb the pace of SAR11 seasonal progression.