Ontology highlight
ABSTRACT: Background
Flixweed (Descurainia sophia L.) is a troublesome and widespread broadleaf weed in winter fields in China, and has evolved high level resistance to acetolactate synthase (ALS)-inhibiting sulfonylurea herbicide tribenuron-methyl.Results
We identified a resistant flixweed population (N11) exhibiting 116.3-fold resistance to tribenuron-methyl relative to the susceptible population (SD8). Target-site ALS gene mutation Pro-197-Thr was identified in resistant plants. Moreover, the resistance can be reversed to 28.7-fold by the cytochrome P450 inhibitor malathion. The RNA-Sequencing was employed to identify candidate genes involved in non-target-site metabolic resistance in this population. Total 26 differentially expressed contigs were identified and eight of them (four P450s, one ABC transporter, three glycosyltransferase) verified by qRT-PCR. Consistent over-expression of the two contigs homology to CYP96A13 and ABCC1 transporter, respectively, were further qRT-PCR validated using additional plants from the resistant and susceptible populations.Conclusions
Tribenuron-methyl resistance in flixweed is controlled by target-site ALS mutation and non-target-site based mechanisms. Two genes, CYP96A13 and ABCC1 transporter, could play an important role in metabolic resistance to tribenuron-methyl in the resistant flixweed population and justify further functional studies.
SUBMITTER: Yang Q
PROVIDER: S-EPMC4974779 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
Yang Qian Q Deng Wei W Li Xuefeng X Yu Qin Q Bai Lianyang L Zheng Mingqi M
BMC genomics 20160805
<h4>Background</h4>Flixweed (Descurainia sophia L.) is a troublesome and widespread broadleaf weed in winter fields in China, and has evolved high level resistance to acetolactate synthase (ALS)-inhibiting sulfonylurea herbicide tribenuron-methyl.<h4>Results</h4>We identified a resistant flixweed population (N11) exhibiting 116.3-fold resistance to tribenuron-methyl relative to the susceptible population (SD8). Target-site ALS gene mutation Pro-197-Thr was identified in resistant plants. Moreove ...[more]