Unknown

Dataset Information

0

Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis.


ABSTRACT: In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9-yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling.

SUBMITTER: Baer J 

PROVIDER: S-EPMC5049395 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis.

Baer John J   Taylor Isaiah I   Walker John C JC  

Journal of experimental botany 20160826 18


In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressor  ...[more]

Similar Datasets

| S-EPMC3566969 | biostudies-literature
2013-01-14 | GSE35288 | GEO
2013-01-14 | E-GEOD-35288 | biostudies-arrayexpress
| S-EPMC8139003 | biostudies-literature
| S-EPMC4124494 | biostudies-literature
| S-EPMC3612645 | biostudies-literature
2013-12-30 | GSE48107 | GEO
2013-12-30 | GSE48106 | GEO
| S-EPMC7756957 | biostudies-literature