Ontology highlight
ABSTRACT: Purpose
Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations.Experimental design
Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples.Results
We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites.Conclusion and clinical relevance
This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes.
SUBMITTER: Zong N
PROVIDER: S-EPMC5094860 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
Zong Nobel N Ping Peipei P Lau Edward E Choi Howard Jh HJ Ng Dominic Cm DC Meyer David D Fang Caiyun C Li Haomin H Wang Ding D Zelaya Ivette M IM Yates John R JR Lam Maggie Py MP
Proteomics. Clinical applications 20140801 7-8
<h4>Purpose</h4>Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations.<h4>Experimental design</h4>Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-r ...[more]