Unknown

Dataset Information

0

Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex.


ABSTRACT: Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

SUBMITTER: Morgan SE 

PROVIDER: S-EPMC5101523 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex.

Morgan Sarah E SE   Cole Daniel J DJ   Chin Alex W AW  

Scientific reports 20161109


Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which  ...[more]

Similar Datasets

| S-EPMC6408346 | biostudies-literature
| S-EPMC2040394 | biostudies-literature
| S-EPMC7003877 | biostudies-literature
| S-EPMC3274801 | biostudies-literature