Project description:Purpose: To investigate the impact of HIV protein Tat on macrophage transcriptome related to atherosclerosis development Methods: Peritoneal macrophages were isolated from myeloid specific IKKβ deficient LDLR-/- (IKKβΔMyeLDLR-/-) mice and their littermates (IKKβF/FLDLR-/-). Then the macrophages were treated with HIV protein Tat or control for 12 hr. Total RNA was extracted for RNAseq Results: HIV protein Tat treatment induces 2640 differentially expressed genes (DEGs) with false discovery rate (FDR) < 1 % and fold change > 3 in control macrophages. Those DEGs enriched in several biological processes that may contribute to atherogenesis. FAIME analysis demonstrated higher geneset scores of those GO terms in the Tat-treated macrophages from IKKβF/FLDLR-/- mice compared with the control ones. IKKβ deletion resulted in loss of geneset score in the macrophages of IKKβΔMyeLDLR-/- treated with HIV Tat. Conclusions: These results indicate that HIV protein Tat may affect many genes in macrophages related atherosclerosis development through IKKβ signaling.
Project description:BackgroundHIV-1 Tat activates transcription of HIV-1 viral genes by inducing phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Tat can also disturb cellular metabolism by inhibiting proliferation of antigen-specific T lymphocytes and by inducing cellular apoptosis. Tat-induced apoptosis of T-cells is attributed, in part, to the distortion of microtubules polymerization. LIS1 is a microtubule-associated protein that facilitates microtubule polymerization.ResultsWe identified here LIS1 as a Tat-interacting protein during extensive biochemical fractionation of T-cell extracts. We found several proteins to co-purify with a Tat-associated RNAPII CTD kinase activity including LIS1, CDK7, cyclin H, and MAT1. Tat interacted with LIS1 but not with CDK7, cyclin H or MAT1 in vitro. LIS1 also co-immunoprecipitated with Tat expressed in HeLa cells. Further, LIS1 interacted with Tat in a yeast two-hybrid system.ConclusionOur results indicate that Tat interacts with LIS1 in vitro and in vivo and that this interaction might contribute to the effect of Tat on microtubule formation.
Project description:Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.
Project description:The transactivator of transcription (Tat) is a key HIV regulatory protein. We aimed to identify the frequency of key polymorphisms in HIV-1C compared with HIV-1B Tat protein, chiefly in the cysteine-, arginine-, and glutamine-rich domains and identify novel point mutations in HIV-1B and C sequences from Southern Brazil. This study was the first to investigate the genetic diversity and point mutations within HIV-1 Tat C in a Brazilian cohort. This was an observational, cross-sectional study, which included sequences of HIV-1B (n = 20) and HIV-1C (n = 21) from Southern Brazil. Additionally, 344 HIV-1C sequences were obtained from the Los Alamos database: 29 from Brazil and 315 from Africa, Asia, and Europe. The frequency of C31S substitution on HIV-1 Tat C in Brazil was 82% vs. 10% in the HIV-1B group (p < 0.0001). The frequency of the R57S substitution among the HIV-1C sequences from Brazil was 74% vs. 20% in HIV-1B (p = 0.004), and that of substitution Q63E in HIV-1C was 80% and 20% in HIV-1B (p < 0.0001). The mutation P60Q was more frequent in HIV-1B than in HIV-1C (55% and 6.12%, respectively, p < 0.0001)). Novel point mutations in the HIV-1C and B Tat functional domains were described. The frequency of C31S and other key point mutations in HIV-1 Tat C in Brazil were similar to those described in Africa, although lower than those in India. The Tat-B and C sequences found in Southern Brazil are consistent with biological differences and have potential implications for HIV-1 subtype pathogenesis.
Project description:BackgroundThe human immunodeficiency virus type 1 (HIV-1) Tat protein is a major viral transactivator required for HIV-1 replication. In the nucleus Tat greatly stimulates the synthesis of full-length transcripts from the HIV-1 promoter by causing efficient transcriptional elongation. Tat induces elongation by directly interacting with the bulge of the transactivation response (TAR) RNA, a hairpin-loop located at the 5'-end of all nascent viral transcripts, and by recruiting cellular transcriptional co-activators. In the cytoplasm, Tat is thought to act as a translational activator of HIV-1 mRNAs. Thus, Tat plays a central role in the regulation of HIV-1 gene expression both at the level of mRNA and protein synthesis. The requirement of Tat in these processes poses an essential question on how sufficient amounts of Tat can be made early on in HIV-1 infected cells to sustain its own synthesis. To address this issue we studied translation of the Tat mRNA in vitro and in human cells using recombinant monocistronic and dicistronic RNAs containing the 5' untranslated region (5'-UTR) of Tat RNA.ResultsThis study shows that the Tat mRNA can be efficiently translated both in vitro and in cells. Furthermore, our data suggest that translation initiation from the Tat mRNA probably occurs by a internal ribosome entry site (IRES) mechanism. Finally, we show that Tat protein can strongly stimulate translation from its cognate mRNA in a TAR dependent fashion.ConclusionThese results indicate that Tat mRNA translation is efficient and benefits from a feedback stimulation by the Tat protein. This translational control mechanism would ensure that minute amounts of Tat mRNA are sufficient to generate enough Tat protein required to stimulate HIV-1 replication.
Project description:HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity.
Project description:In countries infected with HIV clade B, some patients develop a rapidly progressive dementia that if untreated results in death. In regions of the world infected with HIV clade C, only milder forms of cognitive impairment have been recognized. HIV-infected macrophages are the principal mediators of dementia. HIV clade C, however, efficiently infects macrophages and HIV-infected macrophages are found in the brains of clade C-infected patients. HIV-infected macrophages release Tat protein, which may act directly on neurons to cause toxicity. We found that Tat released from Tat-expressing cells was at least 1000-fold more toxic than recombinant Tat protein. We determined whether Tat could interact with NMDA receptors and whether these interactions are clade dependent. It is demonstrated that Tat binds directly to the NMDA receptor leading to excitotoxicity. The Cys 30-Cys 31 motif in Tat is critical for exciting the NMDA receptor and the Cys31Ser mutation found in clade C Tat has a significantly attenuated neurotoxic response. Through molecular modeling and site-directed mutagenesis, we predict that Cys 31 disrupts the disulfide bond between Cys 744 and Cys 798 on the NR1 subunit of the NMDA receptor by directly interacting with Cys 744 leading to a free thiol group on Cys 798 and subsequent persistent activation of the NMDA receptor.
Project description:BackgroundOne facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.ResultsOur approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.ConclusionWe have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Project description:Intracellular Tat101 deregulated the expression of spliceosome core components, such as SF3B2, SF3A1, SFPQ, PCBP1, SYNCRIP, YBX1 and HSP8A/HSP7C, and thus likely the splicing pathway. Viral splicing experiments showed that Tat101 favored the expression of viral unspliced RNA, which are used at the late steps of the viral cycle, rather than spliced RNAs allowing the progression of HIV-1 replication.