Project description:BackgroundGaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in reduced enzymatic activity of β-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene (GRN) as another gene associated with GD.MethodsSerum levels of PGRN were measured from 115 GD patients and 99 healthy controls, whole GRN gene from 40 GD patients was sequenced, and the genotyping of 4 SNPs identified in GD patients was performed in 161 GD and 142 healthy control samples. Development of GD in PGRN-deficient mice was characterized, and the therapeutic effect of rPGRN on GD analyzed.FindingsSerum PGRN levels were significantly lower in GD patients (96.65±53.45ng/ml) than those in healthy controls of the general population (164.99±43.16ng/ml, p<0.0001) and of Ashkenazi Jews (150.64±33.99ng/ml, p<0.0001). Four GRN gene SNPs, including rs4792937, rs78403836, rs850713, and rs5848, and three point mutations, were identified in a full-length GRN gene sequencing in 40 GD patients. Large scale SNP genotyping in 161 GD and 142 healthy controls was conducted and the four SNP sites have significantly higher frequency in GD patients. In addition, "aged" and challenged adult PGRN null mice develop GD-like phenotypes, including typical Gaucher-like cells in lung, spleen, and bone marrow. Moreover, lysosomes in PGRN KO mice exhibit a tubular-like appearance. PGRN is required for the lysosomal appearance of GCase and its deficiency leads to GCase accumulation in the cytoplasm. More importantly, recombinant PGRN is therapeutic in various animal models of GD and human fibroblasts from GD patients.InterpretationOur data demonstrates an unknown association between PGRN and GD and identifies PGRN as an essential factor for GCase's lysosomal localization. These findings not only provide new insight into the pathogenesis of GD, but may also have implications for diagnosis and alternative targeted therapies for GD.
Project description:Gaucher disease (GD), the most common lysosomal storage disease, is caused by mutations in GBA1 encoding of β-glucocerebrosidase (GCase). Recently it was reported that progranulin (PGRN) insufficiency and deficiency associated with GD in human and mice, respectively. However the underlying mechanisms remain unknown. Here we report that PGRN binds directly to GCase and its deficiency results in aggregation of GCase and its receptor LIMP2. Mass spectrometry approaches identified HSP70 as a GCase/LIMP2 complex-associated protein upon stress, with PGRN as an indispensable adaptor. Additionally, 98 amino acids of C-terminal PGRN, referred to as Pcgin, are required and sufficient for the binding to GCase and HSP70. Pcgin effectively ameliorates the disease phenotype in GD patient fibroblasts and animal models. These findings not only demonstrate that PGRN is a co-chaperone of HSP70 and plays an important role in GCase lysosomal localization, but may also provide new therapeutic interventions for lysosomal storage diseases, in particular GD.
Project description:Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates β-glucosylceramide (β-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and β-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.
Project description:Progranulin (PGRN) is a key regulator of lysosomes, and its deficiency has been linked to various lysosomal storage diseases (LSDs), including Gaucher disease (GD), one of the most common LSD. Here, we report that PGRN plays a previously unrecognized role in autophagy within the context of GD. PGRN deficiency is associated with the accumulation of LC3-II and p62 in autophagosomes of GD animal model and patient fibroblasts, resulting from the impaired fusion of autophagosomes and lysosomes. PGRN physically interacted with Rab2, a critical molecule in autophagosome-lysosome fusion. Additionally, a fragment of PGRN containing the Grn E domain was required and sufficient for binding to Rab2. Furthermore, this fragment significantly ameliorated PGRN deficiency-associated impairment of autophagosome-lysosome fusion and autophagic flux. These findings not only demonstrate that PGRN is a crucial mediator of autophagosome-lysosome fusion but also provide new evidence indicating PGRN's candidacy as a molecular target for modulating autophagy in GD and other LSDs in general. KEY MESSAGES : PGRN acts as a crucial factor involved in autophagosome-lysosome fusion in GD. PGRN physically interacts with Rab2, a molecule in autophagosome-lysosome fusion. A 15-kDa C-terminal fragment of PGRN is required and sufficient for binding to Rab2. This PGRN derivative ameliorates PGRN deficiency-associated impairment of autophagy. This study provides new insights into autophagy and may develop novel therapy for GD.
Project description:Diagnosis of rare disorders requires heightened clinical acumen. When such disorders present with atypical or novel features, it adds to the diagnostic challenge. A 9-month-old female infant who had received a diagnosis of neonatal hepatitis due to cytomegalovirus infection at 2 months of age presented to our institute with developmental delay, fever, vomiting, feeding difficulty, breathlessness and features of elevated intracranial pressure due to hydrocephalus. Key examination findings with cholestatic jaundice as an early manifestation led to suspicion of type 4 Farber disease. Observation of hydrocephalus, hypertension, bilateral pinguecula and Erlenmeyer flask deformity of the femur were unusual findings for Farber disease. The child had few features (pinguecula, Erlenmeyer flask deformity and hydrocephalus) overlapping with Gaucher disease. Alternatively, prosaposin deficiency (Farber disease type 7) was another differential diagnosis. Diagnosis of Farber disease was confirmed by detection of foamy macrophages on skin biopsy and two homozygous missense variants in ASAH1 gene.
Project description:A subset of frontotemporal dementia cases are neuropathologically defined by tau-negative, TAR DNA-binding protein-43, and ubiquitin-positive inclusions in the brain and are associated with mutations in the progranulin gene (GRN). Deep sequencing of families exhibiting late-onset dementia revealed several novel variants in GRN. Because of the small size of these families and limited availability of samples, it was not possible to determine whether the variants segregated with the disease. Furthermore, none of these families had autopsy confirmation of diagnosis. We sought to determine if these novel GRN variants alter progranulin (PGRN) protein stability, PGRN secretion, and PGRN cleavage in cultured cells. All the novel GRN variants behave like PGRN wild-type protein, suggesting that these variants represent rare polymorphisms. However, it remains possible that these variants affect other aspects of PGRN function or represent risk factors for dementia when combined with other modifying genes.
Project description:BackgroundGaucher disease (GD) is an inborn error of metabolism caused by mutations in the gene (GBA) coding for glucocerebrosidase (GCase), inherited in an autosomal recessive pattern. GD patients have up to 9% risk of developing PD.Case presentationWe report two patients with GD that developed PD at different disease stages.ConclusionWe reviewed the literature on the coexistence of PD and GD and speculate that the severity of symptoms may be related to the type of GBA mutation inherited.
Project description:Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease with an age at onset generally below 65 years. Mutations in progranulin (GRN) have been reported to be able to cause FTLD through haploinsufficiency. We have sequenced GRN in 121 patients with FTLD and detected six different mutations in eight patients: p.Gly35Glufs*19, p.Asn118Phefs*4, p.Val200Glyfs*18, p.Tyr294*, p.Cys404* and p.Cys416Leufs*30. Serum was available for five of the mutations, where the serum-GRN levels were found to be >50% reduced compared with FTLD patients without GRN mutations. Moreover, the p.Cys416Leufs*30 mutation segregated in an affected family with different dementia diagnoses. The mutation frequency of GRN mutation was 6.6% in our FTLD cohort.
Project description:Gaucher disease (GD) is an autosomal recessive disorder resulting from glucocerebrosidase (GC) deficiency due to mutations in the gene (GBA) coding for this enzyme. We have developed a strategy for analyzing the entire GBA coding region and applied this strategy to 48 unrelated Brazilian patients with GD. We used long-range PCR, genotyping based on the Taqman® assay, nested PCR, and direct DNA sequencing to define changes in the gene. We report here seven novel mutations that are likely to be harmful: S125N (c.491G>A), F213L (c.756T>G), P245T (c.850C>A), W378C (c.1251G>C), D399H (c.1312G>C), 982-983insTGC (c.980_982dupTGC), and IVS10+1G>T (c.1505+1G>T). The last alteration was found as a complex allele together with a L461P mutation. We also identified 24 different mutations previously reported by others. G377S was the third most frequent mutation among the patients included in this study, after N370S and L444P. Therefore, this mutation needs be included in preliminary screens of Brazilian GD patients. The identification of mutant GBA alleles is crucial for increasing knowledge of the GBA mutation spectrum and for better understanding of the molecular basis of GD.