Unknown

Dataset Information

0

Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1.


ABSTRACT: A novel Penicillium oxalicum strain YC-WM1, isolated from activated sludge, was found to be capable of completely degrading 100?mg/L of nicosulfuron within six days when incubated in GSM at 33?°C. Nicosulfuron degradation rates were affected by GSM initial pH, nicosulfuron initial concentration, glucose initial concentration, and carbon source. After inoculation, the medium pH was decreased from 7.0 to 4.5 within one day and remained at around 3.5 during the next few days, in which nicosulfuron degraded quickly. Besides, 100?mg/L of nicosulfuron were completely degraded in GSM medium at pH of 3.5 without incubation after 4 days. So, nicosulfuron degradation by YC-WM1 may be acidolysis. Based on HPLC analysis, GSM medium acidification was due to oxalate accumulation instead of lactic acid and oxalate, which was influenced by different carbon sources and had no relationship to nicosulfuron initial concentration. Furthermore, nicosulfuron broke into aminopyrimidine and pyridylsulfonamide as final products and could not be used as nitrogen source and mycelium didn't increase in GSM medium. Metabolomics results further showed that nicosulfuron degradation was not detected in intracellular. Therefore, oxalate secretion in GSM medium by strain YC-WM1 led to nicosulfuron acidolysis.

SUBMITTER: Feng W 

PROVIDER: S-EPMC5428040 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1.

Feng Weimin W   Wei Zheng Z   Song Jinlong J   Qin Qiao Q   Yu Kaimin K   Li Guochao G   Zhang Jiayu J   Wu Wei W   Yan Yanchun Y  

Scientific reports 20170405 1


A novel Penicillium oxalicum strain YC-WM1, isolated from activated sludge, was found to be capable of completely degrading 100 mg/L of nicosulfuron within six days when incubated in GSM at 33 °C. Nicosulfuron degradation rates were affected by GSM initial pH, nicosulfuron initial concentration, glucose initial concentration, and carbon source. After inoculation, the medium pH was decreased from 7.0 to 4.5 within one day and remained at around 3.5 during the next few days, in which nicosulfuron  ...[more]

Similar Datasets

2019-08-29 | GSE136585 | GEO
| PRJNA317762 | ENA
| PRJNA214440 | ENA
| PRJNA267684 | ENA
| PRJNA784145 | ENA
| PRJNA294261 | ENA