Unknown

Dataset Information

0

Photodriven hydrogen evolution by molecular catalysts using Al2O3-protected perylene-3,4-dicarboximide on NiO electrodes.


ABSTRACT: The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (PMI) that is stabilized against degradation by atomic layer deposition (ALD) of thick insulating Al2O3 layers. Following photoinduced charge injection into NiO in high yield, films with Al2O3 layers demonstrate longer charge separated lifetimes as characterized via femtosecond transient absorption spectroscopy and photoelectrochemical techniques. The photoelectrochemical behavior of the electrodes in the presence of Co(ii) and Ni(ii) molecular proton reduction catalysts is examined, revealing reduction of both catalysts. Under prolonged irradiation, evolved H2 is directly observed by gas chromatography supporting the applicability of PMI embedded in Al2O3 as a photocathode architecture in DSPECs.

SUBMITTER: Kamire RJ 

PROVIDER: S-EPMC5458681 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Photodriven hydrogen evolution by molecular catalysts using Al<sub>2</sub>O<sub>3</sub>-protected perylene-3,4-dicarboximide on NiO electrodes.

Kamire Rebecca J RJ   Majewski Marek B MB   Hoffeditz William L WL   Phelan Brian T BT   Farha Omar K OK   Hupp Joseph T JT   Wasielewski Michael R MR  

Chemical science 20160830 1


The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (<b>PMI</b>) that is st  ...[more]

Similar Datasets

| S-EPMC7242463 | biostudies-literature
| S-EPMC3465409 | biostudies-literature
| S-EPMC9131424 | biostudies-literature
| S-EPMC8596595 | biostudies-literature
| S-EPMC9453800 | biostudies-literature
| S-EPMC10573751 | biostudies-literature
| S-EPMC11510583 | biostudies-literature
| S-EPMC9655204 | biostudies-literature
| S-EPMC9400589 | biostudies-literature
| S-EPMC10941074 | biostudies-literature