Unknown

Dataset Information

0

Reconstitution and Substrate Specificity of the Radical S-Adenosyl-methionine Thiazole C-Methyltransferase in Thiomuracin Biosynthesis.


ABSTRACT: Thiomuracin is a thiopeptide antibiotic with potent activity toward Gram-positive drug-resistant bacteria. Thiomuracin is biosynthesized from a precursor peptide, TbtA, by a complex array of posttranslational modifications. One of several intriguing transformations is the C-methylation of thiazole, occurring at an unactivated sp2 carbon. Herein, we report the in vitro reconstitution of TbtI, the responsible radical S-adenosyl-methionine (rSAM) C-methyltransferase, which catalyzes the formation of 5-methylthiazole at a single site. Our studies demonstrate that a linear hexazole-bearing intermediate of TbtA is a substrate for TbtI whereas macrocyclized thiomuracin GZ is not. In determining the minimal substrate for TbtI, we found that the enzyme is functional when most of the leader peptide has been removed. The in vitro reconstitution of TbtI, a class C rSAM methyltransferase, further adds to the chemical versatility of rSAM enzymes, and informs on the complexity of thiomuracin biosynthesis.

SUBMITTER: Mahanta N 

PROVIDER: S-EPMC5477235 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reconstitution and Substrate Specificity of the Radical S-Adenosyl-methionine Thiazole C-Methyltransferase in Thiomuracin Biosynthesis.

Mahanta Nilkamal N   Zhang Zhengan Z   Hudson Graham A GA   van der Donk Wilfred A WA   Mitchell Douglas A DA  

Journal of the American Chemical Society 20170321 12


Thiomuracin is a thiopeptide antibiotic with potent activity toward Gram-positive drug-resistant bacteria. Thiomuracin is biosynthesized from a precursor peptide, TbtA, by a complex array of posttranslational modifications. One of several intriguing transformations is the C-methylation of thiazole, occurring at an unactivated sp<sup>2</sup> carbon. Herein, we report the in vitro reconstitution of TbtI, the responsible radical S-adenosyl-methionine (rSAM) C-methyltransferase, which catalyzes the  ...[more]

Similar Datasets

| S-EPMC5748327 | biostudies-literature
| S-EPMC3164188 | biostudies-literature
| S-EPMC7113791 | biostudies-literature
| S-EPMC4916742 | biostudies-literature