Project description:Described for the first time in 1971, Schimke immuno-osseous dysplasia (SIOD) is an autosomal-recessive multisystem disorder that is caused by bi-allelic mutations of SMARCAL1, which encodes a DNA annealing helicase. To define better the dental anomalies of SIOD, we reviewed the records from SIOD patients with identified bi-allelic SMARCAL1 mutations, and we found that 66.0% had microdontia, hypodontia, or malformed deciduous and permanent molars. Immunohistochemical analyses showed expression of SMARCAL1 in all developing teeth, raising the possibility that the malformations are cell-autonomous consequences of SMARCAL1 deficiency. We also found that stimulation of cultured skin fibroblasts from SIOD patients with the tooth morphogens WNT3A, BMP4, and TGF?1 identified altered transcriptional responses, raising the hypothesis that the dental malformations arise in part from altered responses to developmental morphogens. To the best of our knowledge, this is the first systematic study of the dental anomalies associated with SIOD.
Project description:Schimke immuno-osseous dysplasia (SIOD, OMIM 242900) is a rare autosomal recessive multisystem childhood disorder characterized by short stature, renal failure, T-cell immunodeficiency, and hypersensitivity to genotoxic agents. SIOD is associated with biallelic mutations in SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA stress response enzyme with annealing helicase activity. Two features of SIOD causing much morbidity and mortality are bone marrow failure and T-cell deficiency with the consequent opportunistic infections. To address the safety and efficacy of bone marrow transplantation (BMT) in SIOD, we reviewed the outcomes of the only five SIOD patients known to us in whom bone marrow or hematopoietic stem cell transplantation has been attempted. We find that only one patient survived the transplantation procedure and that the existing indicators of a good prognosis for bone marrow transplantation were not predictive in this small cohort. Given these observations, we also discuss some considerations for the poor outcomes.
Project description:Schimke Immuno-osseous Dysplasia (SIOD) is a rare autosomal recessive disease caused by a biallelic mutation in SMARCAL1 gene. Typical findings in SIOD include spondylo-epiphyseal dysplasia, steroid resistance nephrotic syndrome, progressive renal failure, T-cell immunodeficiency, bone marrow failure, and cerebral infarction. In this case report, we describe a 9-yr-old girl who presented with failure to thrive in infancy. Nephrotic syndrome was diagnosed at the age of four years. She had three episodes of admission with cerebral stroke due to moyamoya syndrome. In the last admission at Namazi Hospital, Shiraz, southern Iran, in October 2016, she had new cerebral ischemia, developed seizure, and finally died.
Project description:Lifelong immunosuppression is required for allograft survival after kidney transplantation but may not ultimately prevent allograft loss resulting from chronic rejection. We developed an approach that attempts to abrogate immune rejection and the need for post-transplantation immunosuppression in three patients with Schimke immuno-osseous dysplasia who had both T-cell immunodeficiency and renal failure. Each patient received sequential transplants of αβ T-cell-depleted and CD19 B-cell-depleted haploidentical hematopoietic stem cells and a kidney from the same donor. Full donor hematopoietic chimerism and functional ex vivo T-cell tolerance was achieved, and the patients continued to have normal renal function without immunosuppression at 22 to 34 months after kidney transplantation. (Funded by the Kruzn for a Kure Foundation.).
Project description:Schimke immuno-osseous dysplasia is a rare multisystemic disorder caused by biallelic loss of function of the SMARCAL1 gene that plays a pivotal role in replication fork stabilization and thus DNA repair. Individuals affected from this disease suffer from disproportionate growth failure, steroid resistant nephrotic syndrome leading to renal failure and primary immunodeficiency mediated by T cell lymphopenia. With infectious complications being the leading cause of death in this disease, researching the nature of the immunodeficiency is crucial, particularly as the state is exacerbated by loss of antibodies due to nephrotic syndrome or immunosuppressive treatment. Building on previous findings that identified the loss of IL-7 receptor expression as a possible cause of the immunodeficiency and increased sensitivity to radiation-induced damage, we have employed spectral cytometry and multiplex RNA-sequencing to assess the phenotype and function of T cells ex-vivo and to study changes induced by in-vitro UV irradiation and reaction of cells to the presence of IL-7. Our findings highlight the mature phenotype of T cells with proinflammatory Th1 skew and signs of exhaustion and lack of response to IL-7. UV light irradiation caused a severe increase in the apoptosis of T cells, however the expression of the genes related to immune response and regulation remained surprisingly similar to healthy cells. Due to the disease's rarity, more studies will be necessary for complete understanding of this unique immunodeficiency.
Project description:Schimke immuno-osseous dysplasia (SIOD) is a rare multisystem disorder with early mortality and steroid-resistant nephrotic syndrome (SRNS) progressing to end-stage kidney disease. We hypothesized that next-generation gene panel sequencing may unsurface oligosymptomatic cases of SIOD with potentially milder disease courses. We analyzed the renal and extrarenal phenotypic spectrum and genotype-phenotype associations in 34 patients from 28 families, the largest SMARCAL1-associated nephropathy cohort to date. In 11 patients the diagnosis was made unsuspectedly through SRNS gene panel testing. Renal disease first manifested at median age 4.5 yrs, with focal segmental glmerulosclerosis or minimal change nephropathy on biopsy and rapid progression to end-stage kidney disease (ESKD) at median age 8.7 yrs. Whereas patients diagnosed by phenotype more frequently developed severe extrarenal complications (cerebral ischemic events, septicemia) and were more likely to die before age 10 years than patients identified by SRNS-gene panel screening (88 vs. 40%), the subgroups did not differ with respect to age at proteinuria onset and progression to ESKD. Also, 10 of 11 children diagnosed unsuspectedly by Next Generation Sequencing were small at diagnosis and all showed progressive growth failure. Severe phenotypes were usually associated with biallelic truncating mutations and milder phenotypes with biallelic missense mutations. However, no genotype-phenotype correlation was observed for the renal disease course. In conclusion, while short stature is a reliable clue to SIOD in children with SRNS, other systemic features are highly variable. Our findings support routine SMARCAL1 testing also in non-syndromic SRNS.
Project description:Schimke immuno-osseous dysplasia (SIOD) caused by mutations in SMARCAL1 is an ultra-rare disease characterized by specific facial features, skeletal dysplasia, and steroid-resistant nephrotic syndrome, which often leads to kidney failure and requires transplantation. Cellular (T-cell) deficiency, lymphopenia, and infections have been frequently reported, but whether they are due to T-cell-intrinsic defects in T-cell receptor (TCR) signaling associated with SMARCAL1 deficiency or to T-cell-extrinsic effects such as the impaired proliferation of hematopoietic precursors or T-cell-specific immunosuppression after renal transplantation remains unknown. We have explored the effects of SMARCAL1 deficiency on T-cell receptor signaling in primary and immortalized T cells from a 9-year-old SIOD patient under immunosuppression treatment when compared to healthy donors. Immortalized T cells recapitulated the SMARCAL1 deficiency of the patient, as judged by their impaired response to gamma irradiation. The results indicated that TCR-mediated signaling was normal in SIOD-derived immortalized T cells but strongly impaired in the primary T cells of the patient, although rescued with TCR-independent stimuli such as PMA + ionomycin, suggesting that SIOD-associated T-cell signaling is not intrinsically defective but rather the result of the impaired proliferation of hematopoietic precursors or of T-cell-specific immunosuppression. The lack of early thymic emigrants in our patients may support the former hypothesis.
Project description:Immuno-osseous dysplasia is characterised by spondyloepiphyseal dysplasia, lymphopenia with defective cellular immunity, and progressive renal disease. We describe a patient with a severe form of the disease, review the features of another 24 patients, and discuss the previous classification. The differences between the two groups are not striking, and although similarities are greater between affected sibs, the same diagnosis of Schimke immuno-osseous dysplasia should apply to them all. The aetiology and physiopathology of this rare osteochondrodysplasia of presumed autosomal recessive inheritance remain unknown.
Project description:BACKGROUND: Schimke immuno-osseous dysplasia (SIOD, OMIM #242900) is an autosomal-recessive pleiotropic disorder characterized by spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. SIOD is caused by mutations in the gene SMARCAL1. CASE PRESENTATION: We report the clinical and genetic diagnosis of a 5-years old girl with SIOD, referred to our Center because of nephrotic-range proteinuria occasionally detected during the follow-up for congenital hypothyroidism. Mutational analysis of SMARCAL1 gene was performed by polymerase chain reaction (PCR) and bidirectional sequencing. Sequence analysis revealed that patient was compound heterozygous for two SMARCAL1 mutations: a novel missense change (p.Arg247Pro) and a well-known nonsense mutation (p.Glu848*). CONCLUSION: This report provided the clinical and genetic description of a mild phenotype of Schimke immuno-osseous dysplasia associated with nephrotic proteinuria, decreasing after combined therapy with ACE inhibitors and sartans. Our experience highlighted the importance of detailed clinical evaluation, appropriate genetic counseling and molecular testing, to provide timely treatment and more accurate prognosis.
Project description:Arteriosclerosis and emphysema develop in individuals with Schimke immuno-osseous dysplasia (SIOD), a multisystem disorder caused by biallelic mutations in SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1). However, the mechanism by which the vascular and pulmonary disease arises in SIOD remains unknown.We reviewed the records of 65 patients with SMARCAL1 mutations. Molecular and immunohistochemical analyses were conducted on autopsy tissue from 4 SIOD patients.Thirty-two of 63 patients had signs of arteriosclerosis and 3 of 51 had signs of emphysema. The arteriosclerosis was characterized by intimal and medial hyperplasia, smooth muscle cell hyperplasia and fragmented and disorganized elastin fibers, and the pulmonary disease was characterized by panlobular enlargement of air spaces. Consistent with a cell autonomous disorder, SMARCAL1 was expressed in arterial and lung tissue, and both the aorta and lung of SIOD patients had reduced expression of elastin and alterations in the expression of regulators of elastin gene expression.This first comprehensive study of the vascular and pulmonary complications of SIOD shows that these commonly cause morbidity and mortality and might arise from impaired elastogenesis. Additionally, the effect of SMARCAL1 deficiency on elastin expression provides a model for understanding other features of SIOD.