Project description:Circulating protein biomarkers provide information regarding pathways in heart failure (HF) and can add important value to clinicians. Advancements in proteomics allow researchers to measure a multitude of proteins simultaneously with excellent sensitivity and selectivity to detect low abundance proteins. This helps identify previously unrecognized pathways in HF and discover biomarkers and potential targets for HF therapies. Although several proteomic methods exist, including mass spectrometry, protein microarray, aptamer, and proximity extension assay-based techniques, each have their unique advantages. This paper provides an overview of the various proteomic methods, with examples of how each has contributed to understanding the pathways in HF.
Project description:Ticks and tick-borne diseases are significant public health concerns. Bioactive molecules in tick saliva facilitate prolonged blood-feeding and transmission of tick-borne pathogens to the vertebrate host. Alpha-gal syndrome (AGS), a newly reported food allergy, is believed to be induced by saliva proteins decorated with a sugar molecule, the oligosaccharide galactose-⍺-1,3-galactose (α-gal). This syndrome is characterized by an IgE antibody-directed hypersensitivity against α-gal. The α-gal antigen was discovered in the salivary glands and saliva of various tick species including, the Lone Star tick (Amblyomma americanum). The underlying immune mechanisms linking tick bites with α-gal-specific IgE production are poorly understood and are crucial to identify and establish novel treatments for this disease. This article reviews the current understanding of AGS and its involvement with tick species.
Project description:Prediction of protein tertiary structures from amino acid sequence and understanding the mechanisms of how proteins fold, collectively known as "the protein folding problem," has been a grand challenge in molecular biology for over half a century. Theories have been developed that provide us with an unprecedented understanding of protein folding mechanisms. However, computational simulation of protein folding is still difficult, and prediction of protein tertiary structure from amino acid sequence is an unsolved problem. Progress toward a satisfying solution has been slow due to challenges in sampling the vast conformational space and deriving sufficiently accurate energy functions. Nevertheless, several techniques and algorithms have been adopted to overcome these challenges, and the last two decades have seen exciting advances in enhanced sampling algorithms, computational power and tertiary structure prediction methodologies. This review aims at summarizing these computational techniques, specifically conformational sampling algorithms and energy approximations that have been frequently used to study protein-folding mechanisms or to de novo predict protein tertiary structures. We hope that this review can serve as an overview on how the protein-folding problem can be studied computationally and, in cases where experimental approaches are prohibitive, help the researcher choose the most relevant computational approach for the problem at hand. We conclude with a summary of current challenges faced and an outlook on potential future directions.
Project description:Multi-grain crystallography, traditionally performed at synchrotron sources in association with high-pressure studies, has new relevance with respect to laboratory single-crystal X-ray diffraction, in which crystals can be grown rapidly in situ, and a preliminary dataset analysed and solved in a matter of minutes. Subsequently, a full-sphere of IUCr-quality data can then be collected in a few hours. To demonstrate the applicability of laboratory multi-grain crystallography with Cu Kα X-rays, co-crystals of hexafluorobenzene and pyrrole were grown rapidly by cooling a 1:1 liquid mixture in an X-ray capillary on the diffractometer. The software is able to identify a single unit cell from as few as 10% of the diffraction spots from a small number of diffraction frames. Once a unit cell is identified, a full crystal structure solution is rapidly obtained by collecting a small amount of data to a resolution of ca 1 Å. The co-crystal obtained from the 1:1 mixture showed that hexafluorobenzene and pyrrole crystallize in a 3:4 ratio, in contrast to the columnar 1:1 adduct structures typified by hexafluorobenzene and benzene. The generality of our multi-grain approach for samples that are liquid at room temperature (and form a polycrystalline solid mass on cooling) is further demonstrated by investigating and solving the 1:1 co-crystal formed between hexafluorobenzene and pyridine.
Project description:Collectively, viruses have the greatest genetic diversity on Earth, occupy extremely varied niches and are likely able to infect all living organisms. Viral infections are an important issue for human health and cause considerable economic losses when agriculturally important crops or husbandry animals are infected. The advent of metagenomics has provided a precious tool to study viruses by sampling them in natural environments and identifying the genomic composition of a sample. However, reaching a clear recognition and taxonomic assignment of the identified viruses has been hampered by the computational difficulty of these problems. In this perspective paper we examine the trends in current research for the identification of viral sequences in a metagenomic sample, pinpoint the intrinsic computational difficulties for the identification of novel viral sequences within metagenomic samples, and suggest possible avenues to overcome them.
Project description:Mesothelioma comprises a group of rare cancers arising from the mesothelium of the pleura, peritoneum, tunica vaginalis testis and pericardium. Mesothelioma is generally associated with asbestos exposure and has a dismal prognosis, with few therapeutic options. Several next generation sequencing (NGS) experiments have been performed on mesothelioma arising at different sites. These studies highlight a genomic landscape mainly characterized by a high prevalence (>20%) of genomic aberrations leading to functional losses in oncosuppressor genes such as BAP1, CDKN2A, NF2, SETD2 and TP53. Nevertheless, to date, evidence of the effect of targeting these alterations with specific drugs is lacking. Conversely, 1-2% of mesothelioma might harbor activating mutations in oncogenes with specifically approved drugs. The goal of this review is to summarize NGS applications in mesothelioma and to provide insights into target therapy of mesothelioma guided by NGS.
Project description:Despite significant advances in the surgical and systemic therapy of colorectal cancer (CRC) in recent decades, recurrence rates remain high. Apart from microsatellite instability status, the decision to offer adjuvant chemotherapy to patients with CRC is solely based on clinicopathologic factors, which offer an inaccurate risk stratification of patients who derive benefit from adjuvant therapy. Owing to the recent improvements of molecular techniques, it has been possible to detect small allelic fractions of circulating tumor DNA (ctDNA), and therefore, to identify patients with minimal residual disease (MRD) after curative-intent therapies. The incorporation of ctDNA identifying MRD in clinical practice may dramatically change the standard of care of CRC, refining the selection of patients who are candidates for escalation and de-escalation of adjuvant chemotherapy, and even for organ-preservation strategies in rectal cancer. In the present review, we describe the current standard of care and the DNA sequencing methodologies and assays, present the data from completed clinical studies and list ongoing potential landmark clinical trials whose results are eagerly awaited, as well as the impact and perspectives for the near future. The discussed data bring optimism for the future of oncologic care through the hope of refined utilization of adjuvant therapies with higher efficacy and safety for patients with both localized and advanced CRC.
Project description:Agro-industrial residues comprise a rich diversity of plant polymers and bioactive compounds, constituting promising sources for the development of materials, including bioplastics, and food supplements, among other applications. In particular, the polyester cutin is abundant in fruit peel, a plentiful constituent of pomace agro-industrial residues. The potential of diverse fruit pomaces as a source for the development of cutin-derived materials/products has been extensively sought out. This study expands the established knowledge: it sets proof of concept for the production of antimicrobial oligomers from cutin-rich materials isolated in a single step from tomato pomaces generated by two remote agro-industries. Specifically, it first analyzed how the chemical signature (nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS)) of a pomace (and of its major constituents) mirrors that of the corresponding cutin-rich material isolated using an ionic liquid extractant. The cutin-rich materials were then deconstructed (using mild hydrolyses), and the resultant mixtures were chemically characterized and screened for bactericidal activity against Escherichia coli and Staphylococcus aureus. The presence of esterified structures, linear and/or branched, likely comprising dioic acids as a major building block (but not exclusively) is a prerequisite for activity against E. coli but not against S. aureus that was susceptible to monomers as well. Further studies are required to optimize the production of broad bactericidal oligomers from any cutin-rich pomace source, moving ahead toward their circular usage.
Project description:High-throughput screening is an essential component of the toolbox of modern technologies that improve speed and efficiency in contemporary cancer drug development. This is particularly important as we seek to exploit, for maximum therapeutic benefit, the large number of new molecular targets emerging from the Human Genome Project and cancer genomics. Screening of diverse collections of low molecular weight compounds plays a key role in providing chemical starting points for iterative optimisation by medicinal chemistry. Examples of successful drug discovery programmes based on high-throughput screening are described, and these offer potential in the treatment of breast cancer and other malignancies.