Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:Long-acting muscarinic antagonists (LAMAs), along with long-acting ?2-agonists (LABAs), are the mainstay for treatment of patients with COPD. Glycopyrrolate, or glycopyrronium bromide, like other LAMAs, inhibits parasympathetic nerve impulses by selectively blocking the binding of acetylcholine to muscarinic receptors. Glycopyrrolate is unusual in that it preferentially binds to M3 over M2 muscarinic receptors, thereby specifically targeting the primary muscarinic receptor responsible for bronchoconstriction occurring in COPD. Inhaled glycopyrrolate is slowly absorbed from the lungs and rapidly eliminated from the bloodstream, most likely by renal excretion in its unmetabolized form, limiting the potential for systemic adverse events. Inhaled glycopyrrolate is a fast-acting, efficacious treatment option for patients with moderate-severe COPD. It improves lung function, reduces the risk of exacerbations, and alleviates the symptoms of breathlessness, which in turn may explain the improvement seen in patients' quality of life. Inhaled formulations containing glycopyrrolate are well tolerated, and despite being an anticholinergic, few cardiovascular-related events have been reported. Inhaled glycopyrrolate is thus of value as both monotherapy and in combination with other classes of medication for maintenance treatment of COPD. This review covers the mechanism of action of inhaled glycopyrrolate, including its pharmacokinetic, pharmacodynamic, and safety profiles, and effects on mucus secretion. It also discusses the use of inhaled glycopyrrolate in the treatment of COPD, as monotherapy and in fixed-dose combinations with LABAs and inhaled corticosteroid-LABAs, including a triple therapy recently approved in Europe.
Project description:Effective therapeutic modalities and drug administration strategies for the treatment of chronic obstructive pulmonary disease (COPD) exacerbations are lacking. Here, mucus and biofilm dual-penetrating immunoantimicrobials (IMAMs) are developed for bridging antibacterial therapy and pro-resolving immunotherapy of COPD. IMAMs are constructed from ceftazidime (CAZ)-encapsulated hollow mesoporous silica nanoparticles (HMSNs) gated with a charge/conformation-transformable polypeptide. The polypeptide adopts a negatively charged, random-coiled conformation, masking the pores of HMSNs to prevent antibiotic leakage and allowing the nebulized IMAMs to efficiently penetrate the bronchial mucus and biofilm. Inside the acidic biofilm, the polypeptide transforms into a cationic and rigid α helix, enhancing biofilm retention and unmasking the pores to release CAZ. Meanwhile, the polypeptide is conditionally activated to disrupt bacterial membranes and scavenge bacterial DNA, functioning as an adjuvant of CAZ to eradicate lung-colonizing bacteria and inhibiting Toll-like receptor 9 activation to foster inflammation resolution. This immunoantibacterial strategy may shift the current paradigm of COPD management.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Chronic obstructive pulmonary disease (COPD) guidelines suggest using inhaled corticosteroids (ICS) in patients with severe airflow limitation or those at high risk of exacerbations. This recommendation is based on evidence demonstrating that ICS, especially when prescribed in fixed-dose combinations (FDC) with long-acting β2 agonists (LABA), improve quality of life (QoL), decrease exacerbations and hospitalisations, and have been associated with a trend towards a reduction in all-cause mortality. Audit shows that routine prescribing practice frequently uses inhaler therapies outside current guidelines recommendations; severe to very severe disease constitutes about 20% of all COPD patients, but up to 75% of COPD patients are prescribed an ICS, with significant numbers given ICS/LABA as first-line maintenance therapy. The role of ICS in the treatment paradigm for COPD is changing, driven by the growing evidence of increased risk of pneumonia, and the introduction of a new class of FDC; LABA and long-acting muscarinic antagonists (LAMA), which simplify dual bronchodilation and present a plausible alternative therapy. As the evidence base for dual therapy bronchodilation expands, it is likely that maximal bronchodilation will move up the treatment algorithm and ICS reserved for those with more severe disease who are not controlled on dual therapy. This change has already manifested in local COPD algorithms, such as those at Tayside, and represents a significant change in recommended prescribing practice. This review reassesses the role of ICS in the shifting treatment paradigm, in the context of alternative treatment options that provide maximal bronchodilation.
Project description:BACKGROUND:Fractional exhaled nitric oxide (FeNO) is regarded as a potential biomarker for identifying eosinophilic inflammation. We aimed to evaluate the clinical implication of FeNO and its influence on inhaled corticosteroids (ICS) prescription rate in Korean chronic obstructive pulmonary disease (COPD) patients. METHODS:FeNO level and its association with clinical features were analyzed. Changes in the prescription rate of ICS before and after FeNO measurement were identified. RESULTS:A total of 160 COPD patients were divided into increased (≥25 parts per billion [ppb], n=74) and normal (<25 ppb, n=86) FeNO groups according to the recommendations from the American Thoracic Society. Compared with the normal FeNO group, the adjusted odds ratio for having history of asthma without wheezing and with wheezing in the increased FeNO group were 2.96 (95% confidence interval [CI], 1.40-6.29) and 4.24 (95% CI, 1.37-13.08), respectively. Only 21 out of 74 patients (28.4%) with increased FeNO prescribed ICS-containing inhaler and 18 of 86 patients (20.9%) with normal FeNO were given ICS-containing inhaler. Previous exacerbation, asthma, and wheezing were the major factors to maintain ICS at normal FeNO level and not to initiate ICS at increased FeNO level. CONCLUSION:Increased FeNO was associated with the history of asthma irrespective of wheezing. However, FeNO seemed to play a subsidiary role in the use of ICS-containing inhalers in real-world clinics, which was determined with prior exacerbation and clinical features suggesting Th2 inflammation.