Project description:Flexible and wearable devices are attracting more and more attention. Herein, we propose a self-powered triboelectric nanogenerator based on the triboelectric effect of fish scales. As the pressure on the nanogenerator increases, the output voltage of the triboelectric nanogenerator increases. The nanogenerator can output a voltage of 7.4 V and a short-circuit current of 0.18 μA under a pressure of 50 N. The triboelectric effect of fish scales was argued to be related to the lamellar structure composed of collagen fiber bundles. The nanogenerator prepared by fish scales can sensitively perceive human activities such as walking, finger tapping, and elbow bending. Moreover, fish scales are a biomass material with good biocompatibility with the body. The fish-scale nanogenerator is a kind of flexible, wearable, and self-powered triboelectric nanogenerator showing great prospects in healthcare and body information monitoring.
Project description:ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2.
Project description:An epidemic of low quality medicines continues to endanger patients worldwide. Detection of such "medicines" requires low cost, ambient ionization sources coupled to fieldable mass spectrometers for optimum sensitivity and specificity. With the use of triboelectric nanogenerators (TENGs), the charge required to produce gas-phase ions for mass analysis can be obtained without the need for high voltage electrical circuitry, simplifying and lowering the cost of next-generation mass spectrometry instruments. A sliding freestanding (SF) TENG was coupled to a toothpick electrospray setup for the purposes of testing if falsified medicines could be fingerprinted by this approach. Extracts from both genuine and falsified medicines were deposited on the toothpick and the SF TENG actuated to generate electrical charges, resulting in gas-phase ions for both active pharmaceutical ingredients and excipients. Our previous work had shown that direct analysis in real-time (DART) ambient mass spectrometry can identify the components of multiple classes of falsified antimalarial medicines. Experiments performed in this study show that a simple extraction into methanol along with the use of a SF TENG-powered toothpick electrospray can provide similar detection capabilities, but with much simpler and rugged instrumentation, and without the need for compressed gases or high voltage ion source power supplies. TENG toothpick MS allows for rapid analyte ion detection in a safe and low-cost manner, providing robust sampling and ionization capabilities.
Project description:ChIA-PET (chromatin interaction analysis with paired-end tags) enables genome-wide discovery of chromatin interactions involving specific protein factors, with base pair resolution. Interpretation of ChIA-PET data requires a robust analytic pipeline. Here, we introduce ChIA-PIPE, a fully automated pipeline for ChIA-PET data processing, quality assessment, visualization, and analysis. ChIA-PIPE performs linker filtering, read mapping, peak calling, and loop calling and automates quality control assessment for each dataset. To enable visualization, ChIA-PIPE generates input files for two-dimensional contact map viewing with Juicebox and HiGlass and provides a new dockerized visualization tool for high-resolution, browser-based exploration of peaks and loops. To enable structural interpretation, ChIA-PIPE calls chromatin contact domains, resolves allele-specific peaks and loops, and annotates enhancer-promoter loops. ChIA-PIPE also supports the analysis of other related chromatin-mapping data types.
Project description:Underwater communication is a critical and challenging issue, on account of the complex underwater environment. This study introduces an underwater wireless communication approach via Maxwell's displacement current generated by a triboelectric nanogenerator. Underwater electric field can be generated through a wire connected to a triboelectric nanogenerator, while current signal can be inducted in an underwater receiver certain distance away. The received current signals are basically immune to disturbances from salinity, turbidity and submerged obstacles. Even after passing through a 100 m long spiral water pipe, the electric signals are not distorted in waveform. By modulating and demodulating the current signals generated by a sound driven triboelectric nanogenerator, texts and images can be transmitted in a water tank at 16 bits/s. An underwater lighting system is operated by the triboelectric nanogenerator-based voice-activated controller wirelessly. This triboelectric nanogenerator-based approach can form the basis for an alternative wireless communication in complex underwater environments.
Project description:Chia seeds are becoming more and more popular in modern diets. In this contribution NIR and 2D-fluorescence spectroscopy were used to determine their nutritional values, mainly fat and protein content. 25 samples of chia seeds were analysed, whereof 9 samples were obtained from different regions in Kenya, 16 samples were purchased in stores in Germany and originated mostly from South America. For the purchased samples the nutritional information of the package was taken in addition to the values obtained for fat and protein, which were determined at the Hohenheim Core Facility. For the first time the NIR and fluorescence spectroscopy were used for the analysis of chia. For the spectral evaluation two different pre-processing methods were tested. Baseline correction with subsequent mean-centring lead to the best results for NIR spectra whereas SNV (standard normal variate transformation) was sufficient for the evaluation of fluorescence spectra. When combining NIR and fluorescence spectra, the fluorescence spectra were also multiplied with a factor to adjust the intensity levels. The best prediction results for the evaluation of the combined spectra were obtained for Kenyan samples with prediction errors below 0.2 g/100 g. For all other samples the absolute prediction error was 0.51 g/100 g for fat and 0.62 g/100 g for protein. It is possible to determine the amount of protein and fat of chia seeds by fluorescence and NIR spectroscopy. The combination of both methods is beneficial for the predictions. Chia seeds from Kenya had similar protein and lipid contents as South American seeds.
Project description:Triboelectric nanogenerators (TENGs) have recently emerged as a promising technology for efficient water wave energy harvesting. However, there is a paucity of clear guidance regarding the optimal designs of TENGs and their shells to achieve efficient absorption and conversion of water wave energy in real random waves. Herein, from the perspective of wave-body interaction and energy transfer, this paper proposes a structural quality factor (Qunit) for the quantitative evaluation of both the motion of floating triboelectric nanogenerator (Flo-TENG) shells and their capability to absorb and convert water wave energy efficiently. The factor is further subdivided into the amplitude structural quality factor (Qacc), which characterizes shell motion amplitude, and the frequency structural quality factor (Qf), which describes shell motion frequency. This paper systematically investigates the impact of various shell parameters such as bow shapes, curvatures, inclinations, and immersion ratios on Qacc and Qf. The findings indicate that variations in shell shape result in distinct Qunit values along different axial directions of wave propagation. These variations directly influence energy absorption efficiency in these directions. These results provide fundamental guidance for the design of high-performance Flo-TENG shells and the selection of internal energy harvesting directions to enable more efficient energy conversion.
Project description:Contact electrification (CE), a common physical phenomenon, is worth discussing. However, there are few reports on the influence of atmosphere on CE, or on the performance of triboelectric nanogenerators (TENG), based on CE by encapsulating gas inside. Here, we propose physical processes of electron transfer to interpret the impact of the gaseous atmosphere on CE. An atmosphere-filled triboelectric nanogenerator (AF-TENG) encapsulated five different gas-components of air based on the vertical contact separation mode was prepared. The sensitivity (1.02 V·N-1) and the power density (9.63 μW·m-2) of the oxygen-atmosphere-filled AF-TENG were 229.03% and 157.81% higher than these (0.31 V·N-1 and 3.84 μW·m-2) of the nitrogen-atmosphere-filled AF-TENG. As the oxygen atom possesses more atomic energy levels than other atoms, this could act as a "bridge" for more electrons to directly transfer between the two materials. The device package under different atmospheres could not only strengthen understanding of CE and improve the performance of TENG, but also be potentially applicable to prevent and control unnecessary damage caused by static electricity.
Project description:We present model-based analysis for ChIA-PET (MACPET), which analyzes paired-end read sequences provided by ChIA-PET for finding binding sites of a protein of interest. MACPET uses information from both tags of each PET and searches for binding sites in a two-dimensional space, while taking into account different noise levels in different genomic regions. MACPET shows favorable results compared with MACS in terms of motif occurrence and spatial resolution. Furthermore, significant binding sites discovered by MACPET are involved in a higher number of significant three-dimensional interactions than those discovered by MACS. MACPET is freely available on Bioconductor. ChIA-PET; MACPET; Model-based clustering; Paired-end tags; Peak-calling algorithm.