Project description:Failure to induce synthesis of neutralizing Abs to the CD4 binding determinant (CD4BD) of gp120, a central objective in HIV vaccine research, has been alternately ascribed to insufficient immunogen binding to Abs in their germline V region configuration expressed as BCRs, insufficient adaptive mutations in Ab V regions, and conformational instability of gp120. We employed peptide analogs of gp120 residues 421-433 within the CD4BD (CD4BD(core)) to identify Abs produced without prior exposure to HIV (constitutive Abs). The CD4BD(core) peptide was recognized by single-chain Fv fragments from noninfected humans with lupus that neutralized genetically diverse strains belonging to various HIV subtypes. Replacing the framework region (FR) of a V(H)4-family single-chain Fv with the corresponding V(H)3-family FRs from single-chain Fv JL427 improved the CD4BD(core) peptide-binding activity, suggesting a CD4BD(core) binding site outside the pocket formed by the CDRs. Replacement mutations in the FR site vicinity suggested the potential for adaptive improvement. A very small subset of serum CD4BD(core)-specific serum IgAs from noninfected humans without autoimmune disease isolated by epitope-specific chromatography neutralized the virus potently. A CD4BD(core)-specific, HIV neutralizing murine IgM with H and L chain V regions (V(H) and V(L) regions) free of immunogen-driven somatic mutations was induced by immunization with a CD4BD(core) peptide analog containing an electrophilic group that binds B cells covalently. The studies indicate broad and potent HIV neutralization by constitutive Abs as an innate, germline-encoded activity directed to the superantigenic CD4BD(core) epitope that is available for amplification for vaccination against HIV.
Project description:Induction of protective anti-human immunodeficiency virus (HIV) immune responses is the goal of an HIV vaccine. However, this may cause a reactive result in routine HIV testing in the absence of HIV infection.To evaluate the frequency of vaccine-induced seropositivity/reactivity (VISP) in HIV vaccine trial participants.Three common US Food and Drug Administration-approved enzyme immunoassay (EIA) HIV antibody kits were used to determine VISP, and a routine diagnostic HIV algorithm was used to evaluate VISP frequency in healthy, HIV-seronegative adults who completed phase 1 (n = 25) and phase 2a (n = 2) vaccine trials conducted from 2000-2010 in the United States, South America, Thailand, and Africa.Vaccine-induced seropositivity/reactivity, defined as reactive on 1 or more EIA tests and either Western blot-negative or Western blot-indeterminate/atypical positive (profile consistent with vaccine product) and HIV-1-negative by nucleic acid testing.Among 2176 participants free of HIV infection who received a vaccine product, 908 (41.7%; 95% confidence interval [CI], 39.6%-43.8%) had VISP, but the occurrence of VISP varied substantially across different HIV vaccine product types: 399 of 460 (86.7%; 95% CI, 83.3%-89.7%) adenovirus 5 product recipients, 295 of 552 (53.4%; 95% CI, 49.2%-57.7%) recipients of poxvirus alone or as a boost, and 35 of 555 (6.3%; 95% CI, 4.4%-8.7%) of DNA-alone product recipients developed VISP. Overall, the highest proportion of VISP (891/2176 tested [40.9%]) occurred with the HIV 1/2 (rDNA) EIA kit compared with the rLAV EIA (150/700 tested [21.4%]), HIV-1 Plus O Microelisa System (193/1309 tested [14.7%]), and HIV 1/2 Peptide and HIV 1/2 Plus O (189/2150 tested [8.8%]) kits. Only 17 of the 908 participants (1.9%) with VISP tested nonreactive using the HIV 1/2 (rDNA) kit. All recipients of a glycoprotein 140 vaccine (n = 70) had VISP, with 94.3% testing reactive with all 3 EIA kits tested. Among 901 participants with VISP and a Western blot result, 92 (10.2%) had a positive Western blot result (displaying an atypical pattern consistent with vaccine product), and 592 (65.7%) had an indeterminate result. Only 8 participants with VISP received a vaccine not containing an envelope insert.The induction of VISP in HIV vaccine recipients is common, especially with vaccines containing both the HIV-1 envelope and group-specific core antigen gene proteins. Development and detection of VISP appear to be associated with the immunogenicity of the vaccine and the EIA assay used.
Project description:For many deadly viruses, there are no preventive and / or therapeutic vaccines approved by health authorities World-wide (e.g., HIV, Ebola, Dengue, and many others). Although, for some viruses, prophylactic vaccines are very effective (e.g., HBV, and many others).In this realm, we design, manufacture, test, and streamline into the clinics novel viral universal vaccines (VUV). VUV have such unique features, that medical vaccination or natural infection induced immunity against some viruses (e.g., HBV) upon the VUV's administration to the infected with other, different viruses patients, is redirected against these other, newly infecting viruses (e.g., HIV). The specific aim of this work was biomolecular engineering of the HIV universal vaccine comprising the two main functional domains: CD4 or anti-gp120 - as the HIV tagging domain and HBsAg - as the immune response eliciting domain, so that upon its administration the HBV medical immunization or natural infection induced immunity would be redirected, accelerated, and amplified to fight the HIV infection. Per the Institutional Review Board approval and in compliance with the Declaration of Helsinki, all healthy donors and patients were presented with the Patients' Bill of Rights and provided Patient Informed Consent. All the procedures were pursued by the licensed medical doctors. We have biomolecularly engineered HIV universal vaccine (HIVUV) comprising human CD4 or anti-gp120 and HBsAg of HBV. By immunoblotting and magnetic activated molecular sorting, we have demonstrated high specificity of this vaccine in binding HIV. By flow cytometry and nuclear magnetic resonance, we have demonstrated high efficacy of these vaccines to engage HBV immunized patients' immune system against HIV. Administration of HIVUV to blood or lymph of the HIV+ patients resulted in rapid reduction of the HIV viremia down to undetectable. It also resulted in protection of populations of CD4+ cells against HIV caused decline. We have demonstrated the proof of concept for high efficacy of VUV, specifically HIVUV, in annihilating HIV. Nevertheless, the same compositions, processes, and methods, for persons skilled in biotechnology, pharmacogenomics, and molecular medicine, are adaptable for other deadly viral infections, which we vigorously pursue.
Project description:An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising.
Project description:Through its Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) in collaboration with the United States Department of Health and Human Services has produced a checklist to support policy-makers and influenza vaccine manufacturers in identifying key technological, political, financial, and logistical issues affecting the sustainability of influenza vaccine production. This checklist highlights actions in five key areas that are beneficial for establishing successful local vaccine manufacturing. These five areas comprise: (1) the policy environment and health-care systems; (2) surveillance systems and influenza evidence; (3) product development and manufacturing; (4) product approval and regulation; and (5) communication to support influenza vaccination. Incorporating the checklist into national vaccine production programmes has identified the policy gaps and next steps for countries involved in GAP's Technology Transfer Initiative. Lessons learnt from country experiences provide context and insight that complement the checklist's goal of simplifying the complexities of influenza prevention, preparedness, and vaccine manufacturing.
Project description:Successful development of HIV-vaccination strategies will also depend on the ability to use novel approaches to analyse and integrate immunogenicity data generated in vaccine trials. The ANRS VAC 18 trial evaluated the immunogenicity of HIV-LIPO-5 vaccine (5 HIV peptides coupled to a palmytoil tail) administered at W0, 4, 12 and 24 in healthy volunteers. 62-69% of vaccinees developed HIV-specific ELISpot responses by W26. Here we present extensive immunogenicity assessments in a subset of vaccinees using ELISpot, lymphoproliferation, intracellular cytokine staining (ICS), cytokine multiplex and transcriptomic analyses. Peripheral blood mononuclear cells from volunteers collected before and following vaccinations were stimulated with HIV LIPO 5 vaccine, Gag peptides contained or not in the vaccine as controls. Different time points and stimulation conditions were compared, using false discovery rate to control for test multiplicity. 74% and 30% of vaccinees had cultured ELISpot and lymphoproliferation responses at W14, respectively. Ex-vivo ICS showed mainly single IL-2 producing cells. Secretion of IFN-γ, TNF-α, IL-5, and IL-13 increased significantly in response to Gag stimulation after culture at W14 compared to W0. An induction of metallothionein genes was consistently detected after HIV-LIPO-5 stimulation at W0 and W14 related to the adjuvant effect of the lipid tail. After vaccination (W14), significant probes increased substantially (>1200 probes) including IFN-γ, CXCL9, IL2RA, TNFAIP6, CCL3L1 and IL-6 W14 (fold change > 100%). In conclusion, HIV LIPO-5 vaccination elicited memory precursor responses with a Th1 and Th2 profile. The signature profile before vaccination provides information about the adjuvant effect of the lipid tail. Consistently with cytokine responses, vaccination is associated with a modulation in gene expression. This combined approach allowed to identify new signatures of HIV vaccine response and indicates that HIV-LIPO-5 could be further developed as a prime component of heterologous prime boost strategies. PBMC mRNA of 12 healthy volunteers, stimulate in four different conditions (HIV-LIPO-5, Gag+, Gag-, NS) during 6 and 24 hours before and after vaccination (week 0 and week 14)
Project description:Using specimens from a phase 1b trial of the RV144 regimen in HIV-1-uninfected South Africans (HVTN 097), we profiled innate responses to the first ALVAC-HIV immunization. PBMC transcriptional responses peaked 1 day post-vaccination. Type I and II interferon signaling pathways were activated, as were innate pathways critical for adaptive immune priming.
Project description:Induction of broadly neutralizing antibodies (bnAbs) is highly desired for an effective vaccine against HIV-1. Typically, bnAbs develop in patients with high viremia, but can also evolve in some untreated HIV-1 controllers with low viral loads. Here, we identify a subgroup of neutralizer-controllers characterized by myeloid DC (mDCs) with a distinct inflammatory signature and a superior ability to prime T follicular helper (Tfh)-like cells in an STAT4-dependent fashion. This distinct immune profile is associated with a higher frequency of Tfh-like cells in peripheral blood (pTfh) and an enrichment for Tfh-defining genes in circulating CD4+ T cells. Correspondingly, Monocytes from this neutralizer controller subgroup upregulate genes encoding for chemotaxis and inflammation, and secrete high levels of IL-12 in response to TLR stimulation. Together, our results suggest multi-compartment immune networks between mDCs, Tfh and Monocytes that might facilitate development of bnAbs in a subgroup of HIV-1 controllers.
Project description:Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.