Project description:SUMMARY: Vertebral fractures are a major adverse consequence of osteoporosis. In a large placebo-controlled trial in postmenopausal women with osteoporosis, strontium ranelate reduced vertebral fracture risk by 33% over 4 years, confirming the role of strontium ranelate as an effective long-term treatment in osteoporosis. INTRODUCTION: Osteoporotic vertebral fractures are associated with increased mortality, morbidity, and loss of quality-of-life (QoL). Strontium ranelate (2 g/day) was shown to prevent bone loss, increase bone strength, and reduce vertebral and peripheral fractures. The preplanned aim of this study was to evaluate long-term efficacy and safety of strontium ranelate. METHODS: A total of 1,649 postmenopausal osteoporotic women were randomized to strontium ranelate or placebo for 4 years, followed by a 1-year treatment-switch period for half of the patients. Primary efficacy criterion was incidence of patients with new vertebral fractures over 4 years. Lumbar bone mineral density (BMD) and QoL were also evaluated. RESULTS: Over 4 years, risk of vertebral fracture was reduced by 33% with strontium ranelate (risk reduction = 0.67, p < 0.001). Among patients with two or more prevalent vertebral fractures, risk reduction was 36% (p < 0.001). QoL, assessed by the QUALIOST(R), was significantly better (p = 0.025), and patients without back pain were greater (p = 0.005) with strontium ranelate than placebo over 4 years. Lumbar BMD increased over 5 years in patients who continued with strontium ranelate, while it decreased in patients who switched to placebo. Emergent adverse events were similar between groups. CONCLUSION: In this 4- and 5-year study, strontium ranelate is an effective and safe treatment for long-term treatment of osteoporosis in postmenopausal women.
Project description:The title compound, poly[[μ-aqua-tetra-aqua{μ-5-[bis-(carboxyl-atometh-yl)amino]-3-carboxyl-atomethyl-4-cyano-thio-phene-2-carboxyl-ato}distrontium(II)] tetra-hydrate], [Sr(2)(C(12)H(6)N(2)O(8)S)(H(2)O)(5)]·3.79H(2)O, crystallizes with nine- and eight-coordinated Sr(2+) cations. They are bound to seven of the eight ranelate O atoms and five of the water mol-ecules. The SrO(8) and SrO(9) polyhedra are inter-connected by edge-sharing, forming hollow layers parallel to (011). The layers are, in turn, inter-connected by ranelate anions, forming a metal-organic framework (MOF) structure with channels along the a axis. The four water mol-ecules not coordinated to strontium are located in these channels and hydrogen bonded to each other and to the ranelates. Part of the water H atoms are disordered. The compound dehydrates very easily and 0.210 (4) water mol-ecules out of nine were lost during crystal mounting causing additional disorder in the water structure.
Project description:BackgroundGut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect of oral SrR on gut microbiome and metabolic profiles.ResultsIn this study, we used ovariectomized (OVX) Sprague-Dawley rats to construct a PMO model and applied oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococcus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation of lycopene and glutaric acid, which also significantly elevated after oral SrR.ConclusionsWe discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.
Project description:Strontium ranelate (SR) is a pharmaceutical agent used for the prevention and treatment of osteoporosis and fragility fracture. However, little attention has been paid to the effect of SR on alveolar bone remodeling during orthodontic tooth movement and its underlying mechanism. Here, we investigated the influence of SR on orthodontic tooth movement and tooth resorption in Sprague-Dawley rats and the relationship between the nuclear factor-kappa B (NF-κB) pathway, autophagy, and osteoclastogenesis after the administration of SR in vitro and in vivo. In this study, it was found that SR reduced the expression of autophagy-related proteins at the pressure side of the first molars during orthodontic tooth movement. Similarly, the expression of these autophagy-related proteins and the size and number of autophagosomes were downregulated by SR in vitro. The results also showed that SR reduced the number of osteoclasts and suppressed orthodontic tooth movement and root resorption in rats, which could be partially restored using rapamycin, an autophagy inducer. Autophagy was attenuated after pre-osteoclasts were treated with Bay 11-7082, an NF-κB pathway inhibitor, while SR reduced the expression of the proteins central to the NF-κB pathway. Collectively, this study revealed that SR might suppress osteoclastogenesis through NF-κB-pathway-dependent autophagy, resulting in the inhibition of orthodontic tooth movement and root resorption in rats, which might offer a new insight into the treatment of malocclusion and bone metabolic diseases.
Project description:Intervertebral disc degeneration (IVDD) is a prevalent and debilitating condition characterized by chronic back pain and reduced quality of life. Strontium ranelate (SRR) is a compound traditionally used for treating osteoporosis via activating TGF-β1 signaling pathway. Recent studies have proved the anti-inflammatory effect of SRR on chondrocytes. Although the exact mechanism of IVDD remains unclear, accumulating evidences have emphasized the involvement of multifactorial pathogenesis including inflammation, oxidative stress damage, and etc. However, the biological effect of SRR on IVDD and its molecular mechanism has not been investigated. Firstly, this study proved the decreased expression of Transforming Growth Factor-beta 1(TGF-β1) in degenerated human intervertebral disc tissues. Subsequently, we confirmed for the first time that SRR could promote cell proliferation, mitigate inflammation and oxidative stress in human nucleus pulposus cells in vitro via increasing the expression of TGF-β1 and suppressing the Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) pathway. The molecular docking result proved the interaction between SRR and TGF-β1 protein. To further verify this interaction, gain- and loss- of function experiments were conducted. We discovered that both TGF-β1 knockdown and overexpression influenced the activation of the NF-κB pathway. Taken together, SRR could mitigate IL-1β induced-cell dysfunction in human nucleus pulposus cells by regulating TGF-β1/NF-κB axis in vitro. Finally, the in vivo therapeutic effect of SRR on IVDD was confirmed. Our findings may contribute to the understanding of the complex interplay between inflammation and degenerative processes in the intervertebral disc and provide valuable insights into the development of targeted treatment-based therapeutics for IVDD.
Project description:BackgroundStrontium ranelate is currently used for osteoporosis. The international, double-blind, randomised, placebo-controlled Strontium ranelate Efficacy in Knee OsteoarthrItis triAl evaluated its effect on radiological progression of knee osteoarthritis.MethodsPatients with knee osteoarthritis (Kellgren and Lawrence grade 2 or 3, and joint space width (JSW) 2.5-5 mm) were randomly allocated to strontium ranelate 1 g/day (n=558), 2 g/day (n=566) or placebo (n=559). The primary endpoint was radiographical change in JSW (medial tibiofemoral compartment) over 3 years versus placebo. Secondary endpoints included radiological progression, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and knee pain. The trial is registered (ISRCTN41323372).ResultsThe intention-to-treat population included 1371 patients. Treatment with strontium ranelate was associated with smaller degradations in JSW than placebo (1 g/day: -0.23 (SD 0.56) mm; 2 g/day: -0.27 (SD 0.63) mm; placebo: -0.37 (SD 0.59) mm); treatment-placebo differences were 0.14 (SE 0.04), 95% CI 0.05 to 0.23, p<0.001 for 1 g/day and 0.10 (SE 0.04), 95% CI 0.02 to 0.19, p=0.018 for 2 g/day. Fewer radiological progressors were observed with strontium ranelate (p<0.001 and p=0.012 for 1 and 2 g/day). There were greater reductions in total WOMAC score (p=0.045), pain subscore (p=0.028), physical function subscore (p=0.099) and knee pain (p=0.065) with strontium ranelate 2 g/day. Strontium ranelate was well tolerated.ConclusionsTreatment with strontium ranelate 1 and 2 g/day is associated with a significant effect on structure in patients with knee osteoarthritis, and a beneficial effect on symptoms for strontium ranelate 2 g/day.
Project description:ObjectivesThe purpose of this study was to determine the effects of strontium ranelate on ligature-induced periodontitis in rats and assess the putative involvement of heme oxygenase-1 (HO-1) pathway in these effects.Material and methodsMale Wistar rats underwent nylon ligature placement around maxillary molars and were treated (v.o.) with strontium ranelate (20 or 100 mg/kg) for 7 days. After that, rats were euthanized and histomorphometric/histopathological analyses and RT-PCR for HO-1 expression were performed.ResultsStrontium ranelate (20 or 100 mg/kg) prevented bone resorption by 28% and 38%, respectively. Strontium ranelate treatment (100 mg/kg) up-regulated (P < 0.05) heme oxygenase-1 mRNA levels in the gingival tissues in comparison to control groups.ConclusionsStrontium ranelate prevented periodontal bone loss in experimental periodontitis in rats while heme oxygenase-1 mRNA levels increased after treatment.
Project description:To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and subchondral bone remodeling in osteoarthritis (OA).Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg(-1)·d(-1)) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue O staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively.The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apoptosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical properties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks.The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA.
Project description:Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease with a high level of inflammation in the joint micro-environment and cartilage degradation. Anti-inflammation and cartilage regeneration are the key therapies for TMJ-OA, but currently, there are no novel medicines or treatments that can control its pathogenic progression. Strontium ranelate (SrR) is an anti-osteoporosis drug and is now considered a promising anti-OA drug, but the anti-inflammatory effect of SrR remains to be elucidated. In the present study, the anti-inflammatory effect of SrR in a normal or high IL-1β environment was observed. Cell viability under the treatment of SrR was tested using Cell Counting Kit-8. Toluidine blue staining, immunofluorescence staining, hydroxyproline assay, PCR assay and western blotting were used to detect the expression of collagen (Col)II, proteoglycans (PG) and aggrecan as a reflection of extracellular matrix synthesis and MMP-9,13 hydroxyproline was used as an inflammation indicator. IL-1β of 10 ng/ml was added to the culture medium as inflammation environment and the tests of those biomarkers were done again. Then, the changes in β-catenin were also studied by immunofluorescence staining, PCR assay and western blotting to explore the possible involvement of the Wnt/β-catenin pathway. The results showed a significant inhibition of MMP-9, MMP-13, β-catenin and promotion of Col-II, PG and aggrecan in normal chondrocytes. The presence of IL-1β markedly upregulated the expression of MMP-9, MMP-13 and β-catenin while suppressing Col-II and PG and SrR partially reversed this trend. In conclusion, SrR decreased MMPs but promoted Col-II, aggrecan and PG synthesis in rat chondrocytes with or without the presence of IL-1β and SrR attenuated the IL-1β-induced increase in β-catenin, thus reducing the inflammatory reaction.
Project description:ObjectiveRecently, the European Medicines Agency reported that strontium ranelate increases myocardial infarction risk in postmenopausal women, 8.5 years after it was registered for use in osteoporosis. Unreported serious adverse events in clinical trials for other pharmaceuticals have been described in recent years. We assessed reporting of adverse events and fracture efficacy of strontium.MethodsWe compared data on adverse effects (myocardial infarction, venous thromboembolism and pulmonary embolism) and fracture efficacy of strontium in publicly available regulatory documents with data in publications retrieved from searching PubMed.ResultsWe identified 5 regulatory documents and 9 primary publications of 7 randomised, placebo-controlled trials of strontium that reported relevant data. We identified several areas of concern in these reports: the increased risk of myocardial infarction with strontium was not identified in a pivotal phase 3 clinical trial despite specific regulatory review of cardiovascular events; data on myocardial infarction were not included in any primary publication; increased risks of venous thromboembolism and pulmonary embolism with strontium were not reported in either of the phase 3 clinical trials; data on venous thromboembolism were reported in only 5 of 9 primary publications, data on pulmonary embolism in only 2 of 9 primary publications, and either was discussed in <50% of subsequent review articles. There were differences in participant numbers, fracture cases and venous thromboembolism cases between regulatory documents and primary publications. Based on all available data from primary publications and regulatory documents, the number of fractures prevented by strontium use is similar to the number of extra cases of venous thromboembolism, pulmonary embolism and myocardial infarction caused by strontium use.ConclusionsThe risks of strontium use are similar to the benefits. Full disclosure of the clinical trial data and regulatory documents would allow clinicians and their patients to decide whether use of the drug is worthwhile.