Unknown

Dataset Information

0

Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.


ABSTRACT: Mutant Cu/Zn superoxide dismutase (SOD1) can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared from SOD1 familial ALS (FALS) can induce significantly more intracellular reporter protein aggregation than spinal cord homogenates from sporadic ALS, Alzheimer's disease, multiple system atrophy or healthy control individuals. We also determined that the induction of reporter protein aggregation by SOD1-FALS tissue homogenates can be attenuated by incubating the cells with the SOD1 misfolding-specific antibody 3H1, or the small molecule 5-fluorouridine. Our study further implicates SOD1 as the seeding particle responsible for the spread of SOD1-FALS neurodegeneration from its initial onset site(s), and demonstrates two potential therapeutic strategies for SOD1-mediated disease. This work also comprises a medium-throughput cell-based platform of screening potential therapeutics to attenuate propagated aggregation of SOD1.

SUBMITTER: Pokrishevsky E 

PROVIDER: S-EPMC5587256 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.

Pokrishevsky Edward E   Hong Ran Ha RH   Mackenzie Ian R IR   Cashman Neil R NR  

PloS one 20170906 9


Mutant Cu/Zn superoxide dismutase (SOD1) can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared f  ...[more]

Similar Datasets

| S-EPMC3831149 | biostudies-literature
| S-EPMC2253262 | biostudies-literature
| S-EPMC2414278 | biostudies-literature
| S-EPMC1941502 | biostudies-literature
2005-12-31 | GSE2400 | GEO
2010-06-05 | E-GEOD-2400 | biostudies-arrayexpress
| S-EPMC2486295 | biostudies-literature