Project description:BACKGROUND:The number of people with Internet gaming addiction (IGA) is increasing around the world. IGA is known to be associated with personal characteristics, psychosocial factors, and physiological factors. However, few studies have examined the genetic factors related to IGA. This study aimed to investigate the association between IGA and stress-related genetic variants. METHODS:This cross-sectional study was conducted with 230 male high school students in a South Korean city. We selected five stress-related candidate genes: DAT1, DRD4, NET8, CHRNA4, and CRHR1. The DAT1 and DRD4 genes were genotyped by polymerase chain reaction, and the NET8, CHRNA4, and CRHR1 genes were genotyped by pyrosequencing analysis. We performed a Chi-square test to examine the relationship of these five candidate genes to IGA. RESULTS:Having the AA genotype and the A allele of the CRHR1 gene (rs28364027) was associated with higher odds of belonging to the IGA participant group (p = .016 and p = .021, respectively) than to the non-IGA group. By contrast, the DAT1, DRD4, NET8, and CHRNA4 gene polymorphisms showed no significant difference between the IGA group and control group. CONCLUSIONS:These results indicate that polymorphism of the CRHR1 gene may play an important role in IGA susceptibility in the Korean adolescent male population. These findings provide a justification and foundation for further investigation of genetic factors related to IGA.
Project description:Our aim was to investigate whether a genetic variation in the corticotropin-releasing hormone receptor 2 gene might be associated with preterm birth. In this case-control study we evaluated the G/A polymorphism (rs2267717) in intron 2 of the corticotropin-releasing hormone receptor 2 gene in one hundred women with preterm birth and one hundred healthy women with at least one uncomplicated full term pregnancy and no history of preterm birth. No significant correlation was found between the presence of the investigated polymorphism and preterm birth (p=0.9, odds ratio 0.9 [Confidence interval 0.5-1.7]). A dose dependent association of the investigated polymorphism, in women with preterm birth, with gestational age at delivery (p=0.003) and birth weight was observed (p=0.0001). However, no association between IUGR (n=10) with either one of the investigated genotypes (p=0.3) was found. Stratified analysis within case group (i.e. PPROM vs. non-PPROM) revealed no significant difference in genotype distribution (p=0.6). In conclusion, the investigated polymorphism does not increase the risk for preterm birth overall but might modulate the length of pregnancy in a dose dependent fashion in a series of Caucasian women.
Project description:Because an acidic cellular microenvironment is engendered by inflammation and may determine cell differentiation, we elucidated the impact of acidic conditions on induction of proopiomelanocortin (POMC) expression. Here, we demonstrate mechanisms for proton sensitivity of CRH receptor 1 (CRHR1) signaling to POMC and ACTH production. Low pH (6.8) resulted in doubling of POMC expression and ACTH production in pituitary cell line AtT-20 and in primary mouse pituitary cells. Using CRISPR knockout, we show that CRHR1 is necessary for acid-induced POMC expression, and this induction is mediated by CRHR1 histidine residues and calmodulin-dependent protein kinase II in both pituitary corticotroph cells and in nonpituitary cell lines expressing ectopic ACTH. In contrast, CRH ligand binding affinity to CRHR1 was decreased with acidic pH, implying that proton-induced POMC expression prevails in acidic conditions independently of CRH ligand binding. The results indicate that proton-induced CRHR1 signaling regulates ACTH production in response to an acidic microenvironment.
Project description:Heart failure occurs when the heart is unable to effectively pump blood and maintain tissue perfusion. Despite numerous therapeutic advancements over previous decades, the prognosis of patients with chronic heart failure remains poor, emphasizing the need to identify additional pathophysiological factors. Here, we show that corticotropin releasing hormone receptor 2 (Crhr2) is a G protein-coupled receptor highly expressed in cardiomyocytes and continuous infusion of the Crhr2 agonist, urocortin 2 (Ucn2), reduced left ventricular ejection fraction in mice. Moreover, plasma Ucn2 levels were 7.5-fold higher in patients with heart failure compared to those in healthy controls. Additionally, cardiomyocyte-specific deletion of Crhr2 protected mice from pressure overload-induced cardiac dysfunction. Mice treated with a Crhr2 antagonist lost maladaptive 3'-5'-cyclic adenosine monophosphate (cAMP)-dependent signaling and did not develop heart failure in response to overload. Collectively, our results indicate that constitutive Crhr2 activation causes cardiac dysfunction and suggests that Crhr2 blockade is a promising therapeutic strategy for patients with chronic heart failure.
Project description:Corticotropin-releasing hormone receptor (CRHR)-2 participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short-acting beta2-agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic patients recruited as part of the Childhood Asthma Management Program. Replication was conducted in two Caucasian adult asthma cohorts--a cohort of 427 participants enrolled in a completed clinical trial conducted by Sepracor Inc. (Massachusetts, USA) and a cohort of 152 participants enrolled in the Clinical Trial of Low-Dose Theophylline and Montelukast conducted by the American Lung Association Asthma Clinical Research Centers.Five variants were significantly associated with acute bronchodilator response in at least one cohort (P<or=0.05). Variant rs7793837 was associated in Childhood Asthma Management Program and Low-Dose Theophylline and Montelukast (P=0.05 and 0.03, respectively) and haplotype blocks residing at the 5' end of CRHR2 were associated with response in all three cohorts.We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. Although no single variant was significantly associated in all three cohorts, the findings that variants at the 5' end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
Project description:Primary trophoblast cells were treated with corticotropin releasing hormone (CRH) and then subjected to RNA extraction and sequencing.
Project description:BackgroundCorticotropin-releasing hormone (CRH) acts mainly via the CRH receptor 1 (CRH-R1) and plays a crucial role in the stress-induced pathophysiology of irritable bowel syndrome (IBS). Several studies have demonstrated that variants of the CRH-R1 gene carry a potential risk for depression, but evidence for an association between CRH-R1 genotypes and IBS is lacking. We tested the hypothesis that genetic polymorphisms and haplotypes of CRH-R1 moderate the IBS phenotype and negative emotion in IBS patients.MethodsA total of 103 patients with IBS and 142 healthy controls participated in the study. Three single-nucleotide polymorphisms of the CRH-R1 gene (rs7209436, rs242924, and rs110402) were genotyped. Subjects' emotional states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-rating Depression Scale.ResultsThe TT genotype of rs7209436 (P = 0.01) and rs242924 (P = 0.02) was significantly more common in patients with IBS than in controls. Total sample analysis showed significant association between bowel pattern (normal, diarrhea, constipation, or mixed symptoms) and the T allele of rs7209436 (P = 0.008), T allele of rs242924 (P = 0.019), A allele of rs110402 (P = 0.047), and TAT haplocopies (P = 0.048). Negative emotion was not associated with the examined CRH-R1 SNPs.ConclusionThese findings suggest that genetic polymorphisms and the CRH-R1 haplotypes moderate IBS and related bowel patterns. There was no clear association between CRH-R1 genotypes and negative emotion accompanying IBS. Further studies on the CRH system are therefore warranted.
Project description:BackgroundCorticotropin-releasing hormone (CRH) plays an important role in the pathophysiology of irritable bowel syndrome (IBS) and regulates the stress response through two CRH receptors (R1 and R2). Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436) and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients.MethodsA total of 142 IBS patients and 142 healthy controls participated in this study. Seven single nucleotide polymorphisms (SNPs) of the CRHR2 gene (rs4722999, rs3779250, rs2240403, rs2267710, rs2190242, rs2284217, and rs2284220) were genotyped. Subjects' psychological states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-Rating Depression Scale.ResultsWe found that rs4722999 and rs3779250, located in intronic region, were associated with IBS in terms of genotype frequency (rs4722999: P = 0.037; rs3779250: P = 0.017) and that the distribution of the major allele was significantly different between patients and controls. There was a significant group effect (controls vs. IBS), and a CRHR2 genotype effect was observed for three psychological scores, but the interaction was not significant. We found a haplotype of four SNPs (rs4722999, rs3779250, rs2240403, and rs2267710) and two SNPs (rs2284217 and rs2284220) in strong linkage disequilibrium (D' > 0.90). We also found that haplotypes of the CRHR2 gene were significantly different between IBS patients and controls and that they were associated with negative emotion.ConclusionOur findings support the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are related to IBS. In addition, we found associations between CRHR2 genotypes and haplotypes and negative emotion in IBS patients and controls. Further studies on IBS and the CRH system are warranted.
Project description:Cotricotropin-releasing hormone (CRH) and related peptides are produced in skin that is dependent on species and anatomical location. Local peptide production is regulated by ultraviolet radiation (UVR), glucocorticoids and phase of the hair cycle. The skin also expresses the corresponding receptors (CRH-R1 and CRH-R2), with CRH-R1 being the major receptor in humans. CRH-R1 is expressed in epidermal and dermal compartments, and CRH-R2 predominantly in dermal structures. The gene coding for CRH-R1 generates multiple isoforms through a process modulated by UVR, cyclic adenosine monophosphate (cAMP) and phorbol 12-myristate 13-acetate. The phenotypic effects of CRH in human skin cells are largely mediated by CRH-R1alpha through increases in concentrations of cAMP, inositol triphosphate (IP3), or Ca2+ with subsequent activation of protein kinases A (PKA) and C (PKC) dependent pathways. CRH also modulates the activity of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-kappaB), activator protein 1 (AP-1) and cAMP responsive element binding protein (CREB). The cellular functions affected by CRH depend on cell type and nutritional status and include modulation of differentiation program(s), proliferation, viability and immune activity. The accumulated evidence indicates that cutaneous CRH is also a component of a local structure organized similarly to the hypothalamo-pituitary-adrenal axis.
Project description:Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.