Project description:Since the first generation of induced pluripotent stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET) as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog(-/-) fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.
Project description:During protein synthesis, ribosomes encounter many roadblocks, the outcomes of which are largely determined by substrate availability, amino acid features and reaction kinetics. Prolonged ribosome stalling is likely to be resolved by ribosome rescue or quality control pathways, whereas shorter stalling is likely to be resolved by ongoing productive translation. How ribosome function is affected by such hindrances can therefore have a profound impact on the translational output (yield) of a particular mRNA. In this Review, we focus on these roadblocks and the resumption of normal translation elongation rather than on alternative fates wherein the stalled ribosome triggers degradation of the mRNA and the incomplete protein product. We discuss the fundamental stages of the translation process in eukaryotes, from elongation through ribosome recycling, with particular attention to recent discoveries of the complexity of the genetic code and regulatory elements that control gene expression, including ribosome stalling during elongation, the role of mRNA context in translation termination and mechanisms of ribosome rescue that resemble recycling.
Project description:RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.
Project description:Since the first generation of induced Pluripotent Stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights Mesenchymal-Epithelial Transition (MET) as a roadblock, but also faces more severe difficulties to attain a pluripotent state even post-MET. Also, in contrast to previous findings, more efficient cassettes can reprogram both wild type and Nanog-/- fibroblasts with comparable efficiencies, routes and kinetics, rebutting previous studies that Nanog is critical for iPSC generation. We revealed that the 9 amino acids in the N-terminus of Klf4 in polycistronic reprogramming cassettes are the dominant factor causing these critical differences. Our data establishes that some reprogramming roadblocks are system-dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.
Project description:Distinct roadblocks prevent translating basic findings in viral pathogenesis into therapies and implementing potential solutions in the clinic. An ongoing partnership between the Volkswagen Foundation and Nature Medicine resulted in an interactive meeting in 2012, as part of the "Herrenhausen Symposia" series. Current challenges for various fields of viral research were recognized and discussed with a goal in mind--to identify solutions and propose an agenda to address the translational barriers. Here, some of the researchers who participated at the meeting provide a concise outlook at the most pressing unmet research and clinical needs, identifying these key obstacles is a necessary step towards the prevention and cure of human viral diseases.
Project description:In early 2014, a relatively obscure virus, the Zika virus, made headlines worldwide following an increase in the number of congenital malformations. Since then, research on Zika virus, treatment and vaccines have progressed swiftly with various drugs being repurposed and vaccines heading into clinical trials. Nonetheless, the need for a vaccine is crucial in order to eradicate this re-emerging arthropod-borne virus which remained silent since its first discovery in 1947. In this review, we focused on how the inconspicuous virus managed to spread, the key immunological factors required for a vaccine and the various vaccine platforms that are currently being studied.
Project description:Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7?°C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7?°C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.
Project description:Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknots and frameshifting efficiency has previously been found; however, the physical mechanism behind frameshifting still remains to be fully understood. In this study, we utilized synthetic sequences predicted to form mRNA pseudoknot-like structures. Surprisingly, the structures predicted to be strongest lead only to limited frameshifting. Two-dimensional gel electrophoresis of pulse labelled proteins revealed that a significant fraction of the ribosomes were frameshifted but unable to pass the pseudoknot-like structures. Hence, pseudoknots can act as ribosomal roadblocks, prohibiting a significant fraction of the frameshifted ribosomes from reaching the downstream stop codon. The stronger the pseudoknot the larger the frameshifting efficiency and the larger its roadblocking effect. The maximal amount of full-length frameshifted product is produced from a structure where those two effects are balanced. Taking ribosomal roadblocking into account is a prerequisite for formulating correct frameshifting hypotheses.
Project description:Approval of new cancer drugs for paediatric patients generally occurs after their development and approval for treating adult cancers. As most drug development occurs in the industry setting, the relatively small market of paediatric oncology does not provide the financial incentives for companies to actively pursue paediatric oncology solutions. Indeed, between 1948 and January 2003 the FDA approved 120 new cancer drugs, of which only 30 have been used in children. This slow rate of development must be addressed in a meaningful way if we are to make progress in the most pressing settings in childhood cancer. In this Viewpoint article, the key opinion leaders in the field weigh in and offer practical advice on how to address this issue.
Project description:Since the first generation of induced Pluripotent Stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights Mesenchymal-Epithelial Transition (MET) as a roadblock, but also faces more severe difficulties to attain a pluripotent state even post-MET. Also, in contrast to previous findings, more efficient cassettes can reprogram both wild type and Nanog-/- fibroblasts with comparable efficiencies, routes and kinetics, rebutting previous studies that Nanog is critical for iPSC generation. We revealed that the 9 amino acids in the N-terminus of Klf4 in polycistronic reprogramming cassettes are the dominant factor causing these critical differences. Our data establishes that some reprogramming roadblocks are system-dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming. The aim of the experiment is to compare the reprogramming pathways driven by two different polycistronic cassettes (MKOS and OKMS). We have isolated cells at intermediate stages of both MKOS and OKMS reprogramming and analysed their gene expression profiles. 2N- are CD44- ICAM1-, Nanog-GFP-, 3N- are CD44- ICAM1+, Nanog-GFP-, 3N+ are CD44- ICAM1+, Nanog-GFP+, all from day 10 of reprogramming. MKOS/OKMS iPSCs are established iPSC clones, TNG an Embryonic Stem Cell line carrying a Nanog-GFP reporter published in Chambers et al. Cell, 113, 643-655, from this line TNG MKOS and OKMS Embryonic Stem Cells were generated after targeting the Sp3 locus with the MKOS or the OKMS cassette respectively,E14 a reference Embryonic Stem Cell line and MEF are Mouse Embryonic Fibroblasts either wild type or generaterd from TNG MKOS or OKMS ESCs. D6 is the D6s4B5 iPSC line published in O'Malley et al. Nature, 499, 88-91.