Project description:BackgroundWe conducted a phase II trial to evaluate the efficacy of dasatinib, a multitargeted tyrosine kinase inhibitor, for adults with recurrent glioblastoma (GBM).MethodsEligibility requirements were Karnofsky performance status ≥ 60%; no concurrent hepatic enzyme-inducing anticonvulsants; prior treatment with surgery, radiotherapy, and temozolomide exclusively; and activation or overexpression of ≥ 2 putative dasatinib targets in GBM (ie, SRC, c-KIT, EPHA2, and PDGFR). Using a 2-stage design, 77 eligible participants (27 in stage 1, if favorable, and then 50 in stage 2) were needed to detect an absolute improvement in the proportion of patients either alive and progression-free patients at 6 months (6mPFS) or responding (any duration) from a historical 11% to 25%.ResultsA high rate of ineligibility (27%) to stage 1 precluded a powered assessment of efficacy, but there was also infrequent treatment-related toxicity at 100 mg twice daily. Therefore, the study was redesigned to allow intrapatient escalation by 50 mg daily every cycle as tolerated (stage 1B) before determining whether to proceed to stage 2. Escalation was tolerable in 10 of 17 (59%) participants evaluable for that endpoint; however, among all eligible patients (stages 1 and 1B, n = 50), there were no radiographic responses, median overall survival was 7.9 months, median PFS was 1.7 months, and the 6mPFS rate was 6%. The clinical benefit was insufficient to correlate tested biomarkers with efficacy. The trial was closed without proceeding to stage 2.ConclusionsIntraparticipant dose escalation was feasible, but dasatinib was ineffective in recurrent GBM. Clinical trials.gov identified. NCT00423735 (available at http://clinicaltrials.gov/ct2/show/NCT00423735).
Project description:The treatment of patients with recurrent glioblastoma remains a major oncologic problem, with median survival after progression of 7-9 months. To determine the maximum tolerated dose and dose-limiting toxicity (DLT), the combination of dasatinib and cyclonexyl-chloroethyl-nitrosourea (CCNU) was investigated in this setting. The study was designed as multicenter, randomized phase II trial, preceded by a lead-in safety phase. The safety component reported here, which also investigated pharmacokinetics and preliminary clinical activity, required expansion and is therefore considered a phase I part to establish a recommended dosing regimen of the combination of CCNU (90-110 mg/m(2)) and dasatinib (100-200 mg daily). Overall, 28 patients were screened, and 26 patients were enrolled. Five dose levels were explored. DLTs, mainly myelosuppression, occurred in 10 patients. Grade 3 or 4 neutropenia was recorded in 7 patients (26.9%) and thrombocytopenia in 11 patients (42.3%). No significant effect of CCNU coadministration on dasatinib pharmacokinetics was found. Median progression-free survival (PFS) was 1.35 months (95% confidence interval: 1.2-1.4) and 6-month PFS was 7.7%. In this phase I study of recurrent glioblastoma patients, the combination of CCNU and dasatinib showed significant hematological toxicities and led to suboptimal exposure to both agents.
Project description:The combination of re-irradiation and bevacizumab has emerged as a potential therapeutic strategy for patients experiencing their first glioblastoma multiforme (GBM) recurrence. This study aims to assess the effectiveness of the re-irradiation and bevacizumab combination in treating second-progression GBM patients who are resistant to bevacizumab monotherapy. This retrospective study enrolled 64 patients who developed a second progression after single-agent bevacizumab therapy. The patients were divided into two groups: 35 underwent best supportive care (none-ReRT group), and 29 received bevacizumab and re-irradiation (ReRT group). The study measured the overall survival time after bevacizumab failure (OST-BF) and re-irradiation (OST-RT). Statistical tests were used to compare categorical variables, evaluate the difference in recurrence patterns between the two groups, and identify optimal cutoff points for re-irradiation volume. The results of the Kaplan-Meier survival analysis indicated that the re-irradiation (ReRT) group experienced a significantly higher survival rate and longer median survival time than the non-ReRT group. The median OST-BF and OST-RT were 14.5 months and 8.8 months, respectively, for the ReRT group, while the OST-BF for the none-ReRT group was 3.9 months (p < 0.001). The multivariable analysis identified the re-irradiation target volume as a significant factor for OST-RT. Moreover, the re-irradiation target volume exhibited excellent discriminatory ability in the area under the curve (AUC) analysis, with an optimal cutoff point of greater than 27.58 ml. These findings suggest that incorporating re-irradiation with bevacizumab therapy may be a promising treatment strategy for patients with recurrent GBM resistant to bevacizumab monotherapy. The re-irradiation target volume may serve as a valuable selection factor in determining which patients with recurrent GBM are likely to benefit from the combined re-irradiation and bevacizumab treatment modality.
Project description:BackgroundSrc signaling is markedly upregulated in patients with invasive glioblastoma (GBM) after the administration of bevacizumab. The Src family kinase inhibitor dasatinib has been found to effectively block bevacizumab-induced glioma invasion in preclinical models, which led to the hypothesis that combining bevacizumab with dasatinib could increase bevacizumab efficacy in patients with recurrent GBM.MethodsAfter the completion of the phase 1 component, the phase 2 trial (ClinicalTrials.gov identifier NCT00892177) randomized patients with recurrent GBM 2:1 to receive 100 mg of oral dasatinib twice daily (arm A) or placebo (arm B) on days 1 to 14 of each 14-day cycle combined with 10 mg/kg of intravenous bevacizumab on day 1 of each 14-day cycle. The primary endpoint was 6-month progression-free survival (PFS6).ResultsIn the 121 evaluable patients, the PFS6 rate was numerically, but not statistically, higher in arm A versus arm B (28.9% [95% CI, 19.5%-40.0%] vs 18.4% [95% CI, 7.7%-34.4%]; P = .22). Similarly, there was no significant difference in the median overall survival noted between the treatment arms (7.3 months and 7.7 months, respectively; P = .93). The objective response rate was 15.7% in arm A and 26.3% in arm B (P = .52), but with a significantly longer duration in patients treated on arm A (16.3 months vs 2 months). The incidence of grade ≥3 toxicity was comparable between treatment arms, with hematologic toxicities occurring more frequently in arm A versus arm B (15.7% vs 7.9%) (adverse events were assessed as per the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). Correlative tissue analysis demonstrated an association between pSRC/LYN signaling in patient tumors and outcome.ConclusionsDespite upregulation of Src signaling in patients with GBM, the combination of bevacizumab with dasatinib did not appear to significantly improve the outcomes of patients with recurrent GBM compared with bevacizumab alone.
Project description:Glioblastoma, the most aggressive of the gliomas, has a high recurrence and mortality rate. The nature of this poor prognosis resides in the molecular heterogeneity and phenotypic features of this tumor. Despite research advances in understanding the molecular biology, it has been difficult to translate this knowledge into effective treatment. Nearly all will have tumor recurrence, yet to date very few therapies have established efficacy as salvage regimens. This challenge is further complicated by imaging confounders and to an even greater degree by the ever increasing molecular heterogeneity that is thought to be both sporadic and treatment-induced. The development of novel clinical trial designs to support the development and testing of novel treatment regimens and drug delivery strategies underscore the need for more precise techniques in imaging and better surrogate markers to help determine treatment response. This review summarizes recent approaches to treat patients with recurrent glioblastoma and considers future perspectives.
Project description:BackgroundThe prognosis of patients with recurrent World Health Organization (WHO) grade IV malignant glioma is dismal, and there is currently no effective therapy. We conducted a dose-finding and toxicity study in this population of patients, evaluating convection-enhanced, intratumoral delivery of the recombinant nonpathogenic polio-rhinovirus chimera (PVSRIPO). PVSRIPO recognizes the poliovirus receptor CD155, which is widely expressed in neoplastic cells of solid tumors and in major components of the tumor microenvironment.MethodsWe enrolled consecutive adult patients who had recurrent supratentorial WHO grade IV malignant glioma, confirmed on histopathological testing, with measurable disease (contrast-enhancing tumor of ≥1 cm and ≤5.5 cm in the greatest dimension). The study evaluated seven doses, ranging between 107 and 1010 50% tissue-culture infectious doses (TCID50), first in a dose-escalation phase and then in a dose-expansion phase.ResultsFrom May 2012 through May 2017, a total of 61 patients were enrolled and received a dose of PVSRIPO. Dose level -1 (5.0×107 TCID50) was identified as the phase 2 dose. One dose-limiting toxic effect was observed; a patient in whom dose level 5 (1010 TCID50) was administered had a grade 4 intracranial hemorrhage immediately after the catheter was removed. To mitigate locoregional inflammation of the infused tumor with prolonged glucocorticoid use, dose level 5 was deescalated to reach the phase 2 dose. In the dose-expansion phase, 19% of the patients had a PVSRIPO-related adverse event of grade 3 or higher. Overall survival among the patients who received PVSRIPO reached a plateau of 21% (95% confidence interval, 11 to 33) at 24 months that was sustained at 36 months.ConclusionsIntratumoral infusion of PVSRIPO in patients with recurrent WHO grade IV malignant glioma confirmed the absence of neurovirulent potential. The survival rate among patients who received PVSRIPO immunotherapy was higher at 24 and 36 months than the rate among historical controls. (Funded by the Brain Tumor Research Charity and others; ClinicalTrials.gov number, NCT01491893 .).
Project description:Our study is designed to demonstrate altered profiles of circRNAs in the luteal-phase endometrium from patients with RIF. Functional studies will be further confirmed. This study will provide new viewpoint for understanding the roles of non-coding RNA for endometrial stromal cells and epithelial cells function, as well as potential etiologic mechanism for RIF.
Project description:BackgroundGlioblastoma is the most common primary malignancy of the central nervous system with a dismal prognosis. Genomic signatures classify isocitrate dehydrogenase 1 (IDH)-wildtype glioblastoma into three subtypes: proneural, mesenchymal, and classical. Dasatinib, an inhibitor of proto-oncogene kinase Src (SRC), is one of many therapeutics which, despite promising preclinical results, have failed to improve overall survival in glioblastoma patients in clinical trials. We examined whether glioblastoma subtypes differ in their response to dasatinib and could hence be evaluated for patient enrichment strategies in clinical trials.MethodsWe carried out in silico analyses on glioblastoma gene expression (TCGA) and single-cell RNA-Seq data. In addition, in vitro experiments using glioblastoma stem-like cells (GSCs) derived from primary patient tumors were performed, with complementary gene expression profiling and immunohistochemistry analysis of tumor samples.ResultsPatients with the mesenchymal subtype of glioblastoma showed higher SRC pathway activation based on gene expression profiling. Accordingly, mesenchymal GSCs were more sensitive to SRC inhibition by dasatinib compared to proneural and classical GSCs. Notably, SRC phosphorylation status did not predict response to dasatinib treatment. Furthermore, serpin peptidase inhibitor clade H member 1 (SERPINH1), a collagen-related heat-shock protein associated with cancer progression, was shown to correlate with dasatinib response and with the mesenchymal subtype.ConclusionThis work highlights further molecular-based patient selection strategies in clinical trials and suggests the mesenchymal subtype as well as SERPINH1 to be associated with response to dasatinib. Our findings indicate that stratification based on gene expression subtyping should be considered in future dasatinib trials.
Project description:Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM.