Project description:Two hundred years after the birth of Gregor Mendel, it is an appropriate time to reflect on recent developments in the discipline of genetics, particularly advances relating to the prescient friar's model species, the garden pea (Pisum sativum L.). Mendel's study of seven characteristics established the laws of segregation and independent assortment. The genes underlying four of Mendel's loci (A, LE, I, and R) have been characterized at the molecular level for over a decade. However, the three remaining genes, influencing pod color (GP), pod form (V/P), and the position of flowers (FA/FAS), have remained elusive for a variety of reasons, including a lack of detail regarding the loci with which Mendel worked. Here, we discuss potential candidate genes for these characteristics, in light of recent advances in the genetic resources for pea. These advances, including the pea genome sequence and reverse-genetics techniques, have revitalized pea as an excellent model species for physiological-genetic studies. We also discuss the issues that have been raised with Mendel's results, such as the recent controversy regarding the discrete nature of the characters that Mendel chose and the perceived overly-good fit of his segregations to his hypotheses. We also consider the relevance of these controversies to his lasting contribution. Finally, we discuss the use of Mendel's classical results to teach and enthuse future generations of geneticists, not only regarding the core principles of the discipline, but also its history and the role of hypothesis testing.
Project description:It is possible to focus medical genetics education by using a model that integrates the skills of end-user searching of the medical literature into the traditional course content. Since 1988, 313 first-year medical students were studied as they accessed MEDLINE to retrieve information about biochemical genetic disorders. Their search behavior was studied by analyzing data from the National Library of Medicine's traffic files. The skills that they initially learned were reinforced as they searched clinical genetics problem cases in the second-year pathology course, and these skills were consolidated in the third year when the students addressed specific patient-care questions in pediatrics. The students' perception of the value of this model was studied by analyzing questionnaires completed during the exercise. It was demonstrated that when students were taught the skills of accessing MEDLINE by computer, they could formulate a question, retrieve current information, critically review relevant articles, communicate effectively, and use these skills to contribute to patient care.
Project description:Some alleles of the wtf gene family can increase their chances of spreading by using poisons to kill other alleles, and antidotes to save themselves.
Project description:Digenic inheritance (DI) is the simplest form of inheritance for genetically complex diseases. By contrast with the thousands of reports that mutations in single genes cause human diseases, there are only dozens of human disease phenotypes with evidence for DI in some pedigrees. The advent of high-throughput sequencing (HTS) has made it simpler to identify monogenic disease causes and could similarly simplify proving DI because one can simultaneously find mutations in two genes in the same sample. However, through 2012, I could find only one example of human DI in which HTS was used; in that example, HTS found only the second of the two genes. To explore the gap between expectation and reality, I tried to collect all examples of human DI with a narrow definition and characterise them according to the types of evidence collected, and whether there has been replication. Two strong trends are that knowledge of candidate genes and knowledge of protein-protein interactions (PPIs) have been helpful in most published examples of human DI. By contrast, the positional method of genetic linkage analysis, has been mostly unsuccessful in identifying genes underlying human DI. Based on the empirical data, I suggest that combining HTS with growing networks of established PPIs may expedite future discoveries of human DI and strengthen the evidence for them.
Project description:Mendel and Darwin were contemporaries, with much overlap in their scientifically productive years. Available evidence shows that Mendel knew much about Darwin, whereas Darwin knew nothing of Mendel. Because of the fragmentary nature of this evidence, published inferences regarding Mendel's views on Darwinian evolution are contradictory and enigmatic, with claims ranging from enthusiastic acceptance to outright rejection. The objective of this review is to examine evidence from Mendel's published and private writings on evolution and Darwin, and the influence of the scientific environment in which he was immersed. Much of this evidence lies in Mendel's handwritten annotations in his copies of Darwin's books, which this review scrutinises in detail. Darwin's writings directly influenced Mendel's classic 1866 paper, and his letters to Nägeli. He commended and criticised Darwin on specific issues pertinent to his research, including the provisional hypothesis of pangenesis, the role of pollen in fertilisation, and the influence of "conditions of life" on heritable variation. In his final letter to Nägeli, Mendel proposed a Darwinian scenario for natural selection using the same German term for "struggle for existence" as in his copies of Darwin's books. His published and private scientific writings are entirely objective, devoid of polemics or religious allusions, and address evolutionary questions in a manner consistent with that of his scientific contemporaries. The image that emerges of Mendel is of a meticulous scientist who accepted the tenets of Darwinian evolution, while privately pinpointing aspects of Darwin's views of inheritance that were not supported by Mendel's own experiments.
Project description:PurposeThis study characterizes the US clinical genetics workforce to inform workforce planning and public policy development.MethodsA 32-question survey was electronically distributed to American Board of Medical Genetics and Genomics board-certified/eligible diplomates in 2019. We conducted a descriptive analysis of responses from practicing clinical geneticists.ResultsOf the 491 clinical geneticists responding to the survey, a majority were female (59%) and White (79%), worked in academic medical centers (73%), and many engaged in telemedicine (33%). Clinical geneticists reported an average of 13 new and 10 follow-up patient visits per week. The average work week was 50 hours and the majority (58%) worked over half-time in clinical duties. Providers indicated that 39% of new emergency patients wait 3 days or more, and 39% of nonemergency patients wait over 3 months to be seen. Respondents were geographically concentrated in metropolitan areas and many reported unfilled clinical geneticist job vacancies at their institution of more than 3 years.ConclusionWith the rapid expansion of genomic medicine in the past decade, there is still a gap between genetics services needed and workforce capacity. A concerted effort is required to increase the number of clinical geneticists and enhance interdisciplinary teamwork to meet increasing patient needs.
Project description:Telomerase is a specialized reverse transcriptase that extends and maintains the terminal ends of chromosomes, or telomeres. Since its discovery in 1985 by Nobel Laureates Elizabeth Blackburn and Carol Greider, thousands of articles have emerged detailing its significance in telomere function and cell survival. This review provides a current assessment on the importance of telomerase regulation and relates it in terms of medical genetics. In this review, we discuss the recent findings on telomerase regulation, focusing on epigenetics and non-coding RNAs regulation of telomerase, such as microRNAs and the recently discovered telomeric-repeat containing RNA transcripts. Human genetic disorders that develop due to mutations in telomerase subunits, the role of single nucleotide polymorphisms in genes encoding telomerase components and diseases as a result of telomerase regulation going awry are also discussed. Continual investigation of the complex regulation of telomerase will further our insight into the use of controlling telomerase activity in medicine.
Project description:There is no control over the information provided with sequences when they are deposited in the sequence databases. Consequently mistakes can seed the incorrect annotation of other sequences. Grouping genes into families and applying controlled annotation overcomes the problems of incorrect annotation associated with individual sequences. Two databases (http://www.mendel.ac.uk) were created to apply controlled annotation to plant genes and plant ESTs: Mendel-GFDb is a database of plant protein (gene) families based on gapped-BLAST analysis of all sequences in the SWISS-PROT family of databases. Sequences are aligned (ClustalW) and identical and similar residues shaded. The families are visually curated to ensure that one or more criteria, for example overall relatedness and/or domain similarity relate all sequences within a family. Sequence families are assigned a 'Gene Family Number' and a unified description is developed which best describes the family and its members. If authority exists the gene family is assigned a 'Gene Family Name'. This information is placed in Mendel-GFDb. Mendel-ESTS is primarily a database of plant ESTs, which have been compared to Mendel-GFDb, completely sequenced genomes and domain databases. This approach associated ESTs with individual sequences and the controlled annotation of gene families and protein domains; the information being placed in Mendel-ESTS. The controlled annotation applied to genes and ESTs provides a basis from which a plant transcription database can be developed.