Unknown

Dataset Information

0

Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1?.


ABSTRACT: The dynamic architecture of chromatin fibers, a key determinant of genome regulation, is poorly understood. Here, we employ multimodal single-molecule Förster resonance energy transfer studies to reveal structural states and their interconversion kinetics in chromatin fibers. We show that nucleosomes engage in short-lived (micro- to milliseconds) stacking interactions with one of their neighbors. This results in discrete tetranucleosome units with distinct interaction registers that interconvert within hundreds of milliseconds. Additionally, we find that dynamic chromatin architecture is modulated by the multivalent architectural protein heterochromatin protein 1? (HP1?), which engages methylated histone tails and thereby transiently stabilizes stacked nucleosomes. This compacted state nevertheless remains dynamic, exhibiting fluctuations on the timescale of HP1? residence times. Overall, this study reveals that exposure of internal DNA sites and nucleosome surfaces in chromatin fibers is governed by an intrinsic dynamic hierarchy from micro- to milliseconds, allowing the gene regulation machinery to access compact chromatin.

SUBMITTER: Kilic S 

PROVIDER: S-EPMC5770380 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α.

Kilic Sinan S   Felekyan Suren S   Doroshenko Olga O   Boichenko Iuliia I   Dimura Mykola M   Vardanyan Hayk H   Bryan Louise C LC   Arya Gaurav G   Seidel Claus A M CAM   Fierz Beat B  

Nature communications 20180116 1


The dynamic architecture of chromatin fibers, a key determinant of genome regulation, is poorly understood. Here, we employ multimodal single-molecule Förster resonance energy transfer studies to reveal structural states and their interconversion kinetics in chromatin fibers. We show that nucleosomes engage in short-lived (micro- to milliseconds) stacking interactions with one of their neighbors. This results in discrete tetranucleosome units with distinct interaction registers that interconvert  ...[more]

Similar Datasets

| S-EPMC1937519 | biostudies-other
| S-EPMC2064943 | biostudies-other
| S-EPMC3758917 | biostudies-literature
| S-EPMC6430689 | biostudies-literature
| S-EPMC4833211 | biostudies-literature
| S-EPMC5458555 | biostudies-literature
| S-EPMC5872817 | biostudies-literature
| S-EPMC4207534 | biostudies-literature
| S-EPMC2857677 | biostudies-literature