Unknown

Dataset Information

0

Suppression of Arrhythmia by Enhancing Mitochondrial Ca2+ Uptake in Catecholaminergic Ventricular Tachycardia Models.


ABSTRACT: Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca2+ handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca2+ handling. Therefore, intracellular Ca2+ transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca2+ transport proteins are important regulators of cardiac Ca2+ handling. Here we evaluated the potential of pharmacological activation of mitochondrial Ca2+ uptake for the treatment of cardiac arrhythmia. To this aim,we tested substances that enhance mitochondrial Ca2+ uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2R4496C/WT mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca2+ waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca2+ uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca2+ uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2R4496C/WT mice in vivo and abolished diastolic, arrhythmogenic Ca2+ events in human iPSC-derived cardiomyocytes.

SUBMITTER: Schweitzer MK 

PROVIDER: S-EPMC5774336 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Suppression of Arrhythmia by Enhancing Mitochondrial Ca<sup>2+</sup> Uptake in Catecholaminergic Ventricular Tachycardia Models.

Schweitzer Maria K MK   Wilting Fabiola F   Sedej Simon S   Dreizehnter Lisa L   Dupper Nathan J NJ   Tian Qinghai Q   Moretti Alessandra A   My Ilaria I   Kwon Ohyun O   Priori Silvia G SG   Laugwitz Karl-Ludwig KL   Storch Ursula U   Lipp Peter P   Breit Andreas A   Mederos Y Schnitzler Michael M   Gudermann Thomas T   Schredelseker Johann J  

JACC. Basic to translational science 20171108 6


Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca<sup>2+</sup> handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca<sup>2+</sup> handling. Therefore, intracellular Ca<sup>2+</sup> transporters are lead candidate structures for novel and safer antiarrhythmic therapies.  ...[more]

Similar Datasets

| S-EPMC5727474 | biostudies-literature
| S-EPMC9934990 | biostudies-literature
| S-EPMC2796688 | biostudies-literature
| S-EPMC3053436 | biostudies-literature
| S-EPMC7274838 | biostudies-literature
| S-EPMC6219810 | biostudies-literature
| S-EPMC6206886 | biostudies-literature
| S-EPMC8269190 | biostudies-literature
| S-EPMC3667204 | biostudies-literature
| S-EPMC7132542 | biostudies-literature