Project description:BackgroundStreptococcus pneumoniae-associated hemolytic uremic syndrome (P-HUS) is a rare and severe disease. Only a few reports have been published about eculizumab use in P-HUS.MethodsWe analyzed demographic, clinical, and laboratory data of patients with P-HUS from our center.ResultsThe cohort consisted of 4 females and 3 males. All patients had pneumonia. Four were given eculizumab (days 1-3). The eculizumab group required a shorter duration of dialysis and mechanical ventilation (medians 20 vs. 28.5 and 30 vs 38.5 days, respectively) compared with the non-eculizumab group, but this was still much longer than normally reported; the thrombocytopenia resolution was similar in both groups (medians 10 vs. 8 days). Chronic kidney disease (CKD) was correlated with the duration of dialysis and mechanical ventilation duration at 1 year (r = 0.797, P = 0.032 and r = 0.765, P = 0.045) and last follow-up (r = 0.807, P = 0.028 and r = 0.814, P = 0.026, respectively); our scoring system showed even stronger correlations (r = 0.872, P = 0.011 and r = 0.901, P = 0.0057, respectively). The eculizumab group showed slightly better 1-year and last follow-up CKD stage (2.75 vs. 3, P = 0.879 and 2.5 vs. 3.67, P = 0.517).ConclusionsDespite the fact that the eculizumab group showed better outcomes, eculizumab does not seem to improve the course of P-HUS compared with previous reports. Kidney outcomes are strongly correlated with the duration of dialysis and mechanical ventilation duration. A higher resolution version of the Graphical abstract is available as Supplementary information.
Project description:Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Project description:Hemolytic uremic syndrome (HUS) is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The atypical form of HUS is a disease characterized by complement overactivation. Inherited defects in complement genes and acquired autoantibodies against complement regulatory proteins have been described. Incomplete penetrance of mutations in all predisposing genes is reported, suggesting that a precipitating event or trigger is required to unmask the complement regulatory deficiency. The underlying genetic defect predicts the prognosis both in native kidneys and after renal transplantation. The successful trials of the complement inhibitor eculizumab in the treatment of atypical HUS will revolutionize disease management.
Project description:Streptococcus pneumoniae-induced hemolytic uremic syndrome (Sp-HUS) is a kidney disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. This disease is frequently underdiagnosed and its pathophysiology is poorly understood. In this work, we compared clinical strains, isolated from infant Sp-HUS patients, with a reference pathogenic strain D39, for host cytotoxicity and further explored the role of Sp-derived extracellular vesicles (EVs) in the pathogenesis of an HUS infection. In comparison with the wild-type strain, pneumococcal HUS strains caused significant lysis of human erythrocytes and increased the release of hydrogen peroxide. Isolated Sp-HUS EVs were characterized by performing dynamic light-scattering microscopy and proteomic analysis. Sp-HUS strain released EVs at a constant concentration during growth, yet the size of the EVs varied and several subpopulations emerged at later time points. The cargo of the Sp-HUS EVs included several virulence factors at high abundance, i.e., the ribosomal subunit assembly factor BipA, the pneumococcal surface protein A, the lytic enzyme LytC, several sugar utilization, and fatty acid synthesis proteins. Sp-HUS EVs strongly downregulated the expression of the endothelial surface marker platelet endothelial cell adhesion molecule-1 and were internalized by human endothelial cells. Sp-HUS EVs elicited the release of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6) and chemokines (CCL2, CCL3, CXCL1) by human monocytes. These findings shed new light on the overall function of Sp-EVs, in the scope of infection-mediated HUS, and suggest new avenues of research for exploring the usefulness of Sp-EVs as therapeutic and diagnostic targets. IMPORTANCE Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious and underdiagnosed deadly complication of invasive pneumococcal disease. Despite the introduction of the pneumococcal vaccine, cases of Sp-HUS continue to emerge, especially in children under the age of 2. While a lot has been studied regarding pneumococcal proteins and their role on Sp-HUS pathophysiology, little is known about the role of extracellular vesicles (EVs). In our work, we isolate and initially characterize EVs from a reference pathogenic strain (D39) and a strain isolated from a 2-year-old patient suffering from Sp-HUS. We demonstrate that despite lacking cytotoxicity toward human cells, Sp-HUS EVs are highly internalized by endothelial cells and can trigger cytokine and chemokine production in monocytes. In addition, this work specifically highlights the distinct morphological characteristics of Sp-HUS EVs and their unique cargo. Overall, this work sheds new light into potentially relevant players contained in EVs that might elucidate about pneumococcal EVs biogenesis or pose as interesting candidates for vaccine design.
Project description:Atypical hemolytic uremic syndrome (aHUS) is a disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia and acute kidney injury. The histopathologic lesions of aHUS include thrombotic microangiopathy involving the glomerular capillaries and thrombosis involving arterioles or interlobar arteries. Extra-renal manifestations occur in up to 20% of patients. The majority of aHUS is caused by complement system defects impairing ordinary regulatory mechanisms. Activating events therefore lead to unbridled, ongoing complement activity producing widespread endothelial injury. Pathologic mutations include those resulting in loss-of-function in a complement regulatory gene (CFH, CFI, CD46 or THBD) or gain-of-function in an effector gene (CFB or C3). Treatment with the late complement inhibitor, eculizumab - a monoclonal antibody directed against C5 - is effective.
Project description:BackgroundPregnancy is associated with various forms of thrombotic microangiopathy, including hemolytic uremic syndrome. A previous small French study suggested that pregnancy-associated hemolytic uremic syndrome was to be included in the spectrum of atypical hemolytic uremic syndrome linked to complement alternative pathway dysregulation.Design, setting, participants, & measurementsWe sought to retrospectively analyze the presentation, outcome, and frequency of complement alternative pathway gene variants in a larger international (France, United Kingdom, Italy) cohort of patients with pregnancy-associated hemolytic uremic syndrome.ResultsEighty-seven patients with pregnancy-associated hemolytic uremic syndrome were included. Hemolytic uremic syndrome occurred mainly during the first pregnancy (58%) and in the postpartum period (76%). At diagnosis, 56 (71%) patients required dialysis. Fifty-six (78%) patients underwent plasma exchanges, 21 (41%) received plasma infusions, and four (5%) received eculizumab. During follow-up (mean duration of 7.2 years), 41 (53%) patients reached ESRD, 15 (19%) had CKD, and 18 (28%) patients experienced hemolytic uremic syndrome relapse. Twenty-four patients (27%) received a kidney transplant and a recurrence of hemolytic uremic syndrome occurred in 13 (54%) patients. Variants in complement genes were detected in 49 (56%) patients, mainly in the CFH (30%) and CFI genes (9%).ConclusionsPregnancy-associated hemolytic uremic syndrome and atypical hemolytic uremic syndrome nonrelated to pregnancy have the same severity at onset and during follow-up and the same frequency of complement gene variants.
Project description:Atypical hemolytic uremic syndrome (aHUS) is a disorder characterized by thrombocytopenia and microangiopathic hemolytic anemia due to endothelial injury. aHUS is felt to be caused by defective complement regulation due to underlying genetic mutations in complement regulators or activators, most often of the alternative pathway. Mutations causing aHUS can be subdivided into two groups, loss of function mutations (affecting factor H, factor H-related proteins, membrane co-factor protein, and factor I), and gain of function mutations (affecting factor B and C3). As more information becomes available on the relationship between specific mutations and clinical outcome, complete genetic workup of aHUS patients becomes more and more important. In this review, we will discuss the genetic background of aHUS, the role of complement for aHUS pathogenesis, and the different groups of specific mutations known to be involved in the pathogenesis of aHUS.
Project description:BackgroundThe hemolytic-uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin-producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic-uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic-uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic-uremic syndrome.MethodsWe sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic-uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic-uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells.ResultsOf 152 patients with atypical hemolytic-uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I-mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic-uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were thus less protected from activated complement.ConclusionsMutations that impair the function of thrombomodulin occur in about 5% of patients with atypical hemolytic-uremic syndrome.
Project description:Complement dysregulation leads to atypical hemolytic uremic syndrome (aHUS), while ADAMTS13 deficiency causes thrombotic thrombocytopenic purpura. We investigated whether genetic variations in the ADAMTS13 gene partially explain the reduced activity known to occur in some patients with aHUS. We measured complement activity and ADAMTS13 function, and completed mutation screening of multiple complement genes and ADAMTS13 in a large cohort of aHUS patients. In over 50% of patients we identified complement gene mutations. Surprisingly, 80% of patients also carried at least 1 nonsynonymous change in ADAMTS13, and in 38% of patients, multiple ADAMTS13 variations were found. Six of the 9 amino acid substitutions in ADAMTS13 were common single nucleotide polymorphisms; however, 3 variants-A747V, V832M, and R1096H- were rare, with minor allele frequencies of 0.0094%, 0.5%, and 0.32%, respectively. Reduced complement and ADAMTS13 activity (<60% of normal activity) were found in over 60% and 50% of patients, respectively. We concluded that partial ADAMTS13 deficiency is a common finding in aHUS patients and that genetic screening and functional tests of ADAMTS13 should be considered in these patients.
Project description:Our objective was to establish the rate of neurological involvement in Shiga toxin-producing Escherichia coli-hemolytic uremic syndrome (STEC-HUS) and describe the clinical presentation, management and outcome. A retrospective chart review of children aged ≤ 16 years with STEC-HUS in Children's Health Ireland from 2005 to 2018 was conducted. Laboratory confirmation of STEC infection was required for inclusion. Neurological involvement was defined as encephalopathy, focal neurological deficit, and/or seizure activity. Data on clinical presentation, management, and outcome were collected. We identified 240 children with HUS; 202 had confirmed STEC infection. Neurological involvement occurred in 22 (11%). The most common presentation was seizures (73%). In the neurological group, 19 (86%) were treated with plasma exchange and/or eculizumab. Of the 21 surviving children with neurological involvement, 19 (91%) achieved a complete neurological recovery. A higher proportion of children in the neurological group had renal sequelae (27% vs. 12%, P = .031). One patient died from multi-organ failure.Conclusion: We have identified the rate of neurological involvement in a large cohort of children with STEC-HUS as 11%. Neurological involvement in STEC-HUS is associated with good long-term outcome (complete neurological recovery in 91%) and a low case-fatality rate (4.5%) in our cohort. What is Known: • HUS is associated with neurological involvement in up to 30% of cases. • Neurological involvement has been reported as predictor of poor outcome, with associated increased morbidity and mortality. What is New: • The incidence of neurological involvement in STEC-HUS is 11%. • Neurological involvement is associated with predominantly good long-term outcome (90%) and a reduced case-fatality rate (4.5%) compared to older reports.