Unknown

Dataset Information

0

Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface.


ABSTRACT: Cavitation and hollow structures can be introduced in nanomaterials via the Kirkendall effect in an alloying or reaction system. By introducing dense nanoscale twins into copper nanowires (CuNWs), we change the surface structure and prohibit void formation in oxidation of the nanowires. The nanotwinned CuNW exhibits faceted surfaces of very few atomic steps as well as a very low vacancy generation rate at copper/oxide interfaces. Together they lower the oxidation rate and eliminate void formation at the copper/oxide interface. We propose that the slow reaction rate together with the highly effective vacancy absorption at interfaces leads to a lattice shift in the oxidation reaction. Our findings suggest that the nanoscale Kirkendall effect can be manipulated by controlling the internal and surface crystal defects of nanomaterials.

SUBMITTER: Huang CL 

PROVIDER: S-EPMC5780419 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface.

Huang Chun-Lung CL   Weng Wei-Lun WL   Liao Chien-Neng CN   Tu K N KN  

Nature communications 20180123 1


Cavitation and hollow structures can be introduced in nanomaterials via the Kirkendall effect in an alloying or reaction system. By introducing dense nanoscale twins into copper nanowires (CuNWs), we change the surface structure and prohibit void formation in oxidation of the nanowires. The nanotwinned CuNW exhibits faceted surfaces of very few atomic steps as well as a very low vacancy generation rate at copper/oxide interfaces. Together they lower the oxidation rate and eliminate void formatio  ...[more]

Similar Datasets

| S-EPMC4755137 | biostudies-literature
| S-EPMC4205837 | biostudies-literature
| S-EPMC5827571 | biostudies-literature
| S-EPMC11805988 | biostudies-literature
| S-EPMC8585330 | biostudies-literature
| S-EPMC5997991 | biostudies-literature
| S-EPMC4505150 | biostudies-literature
| S-EPMC4448551 | biostudies-other
| S-EPMC8006150 | biostudies-literature
| S-EPMC7912526 | biostudies-literature