Project description:Chemotherapy-induced peripheral neuropathy is a frequent, disabling side effect of anticancer drugs. Oxaliplatin, a platinum compound used in the treatment of advanced colorectal cancer, often leads to a form of chemotherapy-induced peripheral neuropathy characterized by mechanical and cold hypersensitivity. Current therapies for chemotherapy-induced peripheral neuropathy are ineffective, often leading to the cessation of treatment. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal, non-selective cation-permeable channel expressed in nociceptors, activated by physical stimuli and cellular stress products. TRPA1 has been linked to the establishment of chemotherapy-induced peripheral neuropathy and other painful neuropathic conditions. Sigma-1 receptor is an endoplasmic reticulum chaperone known to modulate the function of many ion channels and receptors. Sigma-1 receptor antagonist, a highly selective antagonist of Sigma-1 receptor, has shown effectiveness in a phase II clinical trial for oxaliplatin chemotherapy-induced peripheral neuropathy. However, the mechanisms involved in the beneficial effects of Sigma-1 receptor antagonist are little understood. We combined biochemical and biophysical (i.e. intermolecular Förster resonance energy transfer) techniques to demonstrate the interaction between Sigma-1 receptor and human TRPA1. Pharmacological antagonism of Sigma-1R impaired the formation of this molecular complex and the trafficking of functional TRPA1 to the plasma membrane. Using patch-clamp electrophysiological recordings we found that antagonists of Sigma-1 receptor, including Sigma-1 receptor antagonist, exert a marked inhibition on plasma membrane expression and function of human TRPA1 channels. In TRPA1-expressing mouse sensory neurons, Sigma-1 receptor antagonists reduced inward currents and the firing of actions potentials in response to TRPA1 agonists. Finally, in a mouse experimental model of oxaliplatin neuropathy, systemic treatment with a Sigma-1 receptor antagonists prevented the development of painful symptoms by a mechanism involving TRPA1. In summary, the modulation of TRPA1 channels by Sigma-1 receptor antagonists suggests a new strategy for the prevention and treatment of chemotherapy-induced peripheral neuropathy and could inform the development of novel therapeutics for neuropathic pain.
Project description:Neurotoxicity is one of the most common side effects of oxaliplatin-based therapy. Most patients who receive at least 3-4 months of treatment suffer from peripheral sensory neurotoxicity (PSN), characterised by the loss or impairment of tactile and proprioceptive sensory function. Motor impairment, such as muscle weakness or palsy, has been rarely described, and the physiopathology of PSN, as well as the motor symptoms due to oxaliplatin-based treatment, are not adequately understood. Here we report the case of a patient who experienced severe acute peripheral motor neuropathy as a side effect of oxaliplatin-based treatment. We also review other cases of PSN published in the literature and suggest a novel hypothesis on the physiopathology of this particular event. Take-away lessons: Not all of the neurological symptoms observed during oxaliplatin-based treatment can be traced back directly to the oxaliplatin itself, and other factors, such as electrolyte imbalances, may contribute to the symptoms. Patients with gastro-intestinal malignancies are the patients most affected by neurotoxicity due to the side effects of chemotherapy and the disease itself.
Project description:Oxaliplatin (L-OHP) is widely prescribed for treating gastroenterological cancer. L-OHP-induced peripheral neuropathy is a critical toxic effect that limits the dosage of L-OHP. An ideal chemotherapeutic strategy that does not result in severe peripheral neuropathy but confers high anticancer efficacy has not been established. To establish an optimal evidence-based dosing regimen, a pharmacokinetic-toxicodynamic (PK-TD) model that can characterize the relationship between drug administration regimen and L-OHP-induced peripheral neuropathy is required. We developed a PK-TD model of L-OHP for peripheral neuropathy using Phoenix® NLME™ Version 8.1. Plasma concentration of L-OHP, the number of withdrawal responses in the acetone test, and the threshold value in the von Frey test following 3, 5, or 8 mg/kg L-OHP administration were used. The PK-TD model consisting of an indirect response model and a transit compartment model adequately described and simulated time-course alterations of onset and grade of L-OHP-induced cold and mechanical allodynia. The results of model analysis suggested that individual fluctuation of plasma L-OHP concentration might be a more important factor for individual variability of neuropathy than cell sensitivity to L-OHP. The current PK-TD model might contribute to investigation and establishment of an optimal dosing strategy that can reduce L-OHP-induced neuropathy.
Project description:Oxaliplatin is a commonly used drug to treat cancer, extending the rate of disease-free survival by 20% in colorectal cancer. However, oxaliplatin induces a disabling form of neuropathy resulting in more than 60% of patients having to reduce or discontinue oxaliplatin, negatively impacting their chance of survival. Oxaliplatin-induced neuropathies are accompanied by degeneration of sensory fibers in the epidermis and hyperexcitability of sensory neurons. These morphological and functional changes have been associated with sensory symptoms such as dysesthesia, paresthesia and mechanical and cold allodynia. Various strategies have been proposed to prevent or treat oxaliplatin-induced neuropathies without success. The anti-diabetic drug metformin has been recently shown to exert neuroprotection in other chemotherapy-induced neuropathies, so here we aimed to test if metformin can prevent the development of oxaliplatin-induced neuropathy in a rat model of this condition. Animals treated with oxaliplatin developed significant intraepidermal fiber degeneration, a mild gliosis in the spinal cord, and mechanical and cold hyperalgesia. The concomitant use of metformin prevented degeneration of intraepidermal fibers, gliosis, and the altered sensitivity. Our evidence further supports metformin as a new approach to prevent oxaliplatin-induced neuropathy with a potential important clinical impact.
Project description:BackgroundThe majority of patients receiving the platinum-based chemotherapy drug oxaliplatin develop peripheral neurotoxicity. Because this neurotoxicity involves ROS production, we investigated the efficacy of mangafodipir, a molecule that has antioxidant properties and is approved for use as an MRI contrast enhancer.MethodsThe effects of mangafodipir were examined in mice following treatment with oxaliplatin. Neurotoxicity, axon myelination, and advanced oxidized protein products (AOPPs) were monitored. In addition, we enrolled 23 cancer patients with grade ≥ 2 oxaliplatin-induced neuropathy in a phase II study, with 22 patients receiving i.v. mangafodipir following oxaliplatin. Neuropathic effects were monitored for up to 8 cycles of oxaliplatin and mangafodipir.ResultsMangafodipir prevented motor and sensory dysfunction and demyelinating lesion formation. In mice, serum AOPPs decreased after 4 weeks of mangafodipir treatment. In 77% of patients treated with oxaliplatin and mangafodipir, neuropathy improved or stabilized after 4 cycles. After 8 cycles, neurotoxicity was downgraded to grade ≥ 2 in 6 of 7 patients. Prior to enrollment, patients received an average of 880 ± 239 mg/m2 oxaliplatin. Patients treated with mangafodipir tolerated an additional dose of 458 ± 207 mg/m2 oxaliplatin despite preexisting neuropathy. Mangafodipir responders managed a cumulative dose of 1,426 ± 204 mg/m2 oxaliplatin. Serum AOPPs were lower in responders compared with those in nonresponders.ConclusionOur study suggests that mangafodipir can prevent and/or relieve oxaliplatin-induced neuropathy in cancer patients. Trial registration. Clinicaltrials.gov NCT00727922. Funding. Université Paris Descartes, Ministère de la Recherche et de l'Enseignement Supérieur, and Assistance Publique-Hôpitaux de Paris.
Project description:Oxaliplatin, in combination with 5-fluorouracil plus folinate (or capecitabine), has increased survival substantially in stage III colorectal cancer and prolonged life in stage IV patients, but its use is compromised because of severe toxicity. Chemotherapy-induced peripheral neuropathy (CIPN) is the most problematic dose-limiting toxicity of oxaliplatin. Oncologists included for years calcium and magnesium infusion as part of clinical practice for preventing CIPN. Results from a phase III prospective study published in 2014, however, overturned this practice. No other treatments have been clinically proven to prevent this toxicity. There is a body of evidence that CIPN is caused by cellular oxidative stress. Clinical and preclinical data suggest that the manganese chelate and superoxide dismutase mimetic mangafodipir (MnDPDP) is an efficacious inhibitor of CIPN and other conditions caused by cellular oxidative stress, without interfering negatively with the tumoricidal activity of chemotherapy. MnPLED, the metabolite of MnDPDP, attacks cellular oxidative stress at several critical levels. Firstly, MnPLED catalyzes dismutation of superoxide (O2•-), and secondly, having a tremendous high affinity for iron (and copper), PLED binds and disarms redox active iron/copper, which is involved in several detrimental oxidative steps. A case report from 2009 and a recent feasibility study suggest that MnDPDP may prevent or even cure oxaliplatin-induced CIPN. Preliminary results from a phase II study (PLIANT) suggest efficacy also of calmangafodipir, but these results are according to available data obscured by a surprisingly low number of adverse events and a seemingly lower than expected efficacy of FOLFOX.
Project description:BackgroundOxaliplatin-induced peripheral neurotoxicity (OIPN) limits the dose of chemotherapy and seriously affects the quality of life. Huangqi Guizhi Wuwu Decoction (HGWD) is a classical Traditional Chinese Medicine (TCM) formula for the prevention of OIPN. However, its specific pharmacological mechanism of action remains unknown. Our study found that HGWD can effectively alleviate chronic OIPN and regulate intestinal flora. Therefore, we explored the mechanism of action of HGWD in alleviating chronic OIPN from the perspective of intestinal flora.MethodsIn this study, we established an OIPN model in C57BL/6 mice treated with different concentrations of HGWD. Mechanical pain and cold pain were assessed at certain time points, and samples of mice colon, dorsal root ganglion (DRG), serum, and feces were collected. Associated inflammation levels in the colon and DRG were detected using immunohistochemical techniques; the serum lipopolysaccharide (LPS) levels and associated inflammation were assessed using the appropriate kits; and 16S rRNA sequencing was used to examine the dynamic changes in gut microorganisms. Finally, established fecal microbiota transplantation (FMT) and antibiotic (ABX) pretreatment models were used to validate flora's role in HGWD for chronic OIPN by pain scoring and related pathological analysis.ResultsHGWD treatment significantly alleviated pain sensitivity in chronic OIPN mice. Pathological results showed that HGWD treatment improved intestinal ZO-1 expression and reduced serum LPS levels and associated inflammatory factors in the colon, serum, and DRG. The 16S rRNA results showed that HGWD restored the composition of the intestinal flora in a time-dependent manner to alleviate OIPN. FMT and ABX experiments demonstrated that HGWD can alleviate chronic OIPN by regulating intestinal flora homeostasis.ConclusionsHGWD prevents chronic OIPN by dynamically regulating intestinal flora homeostasis, thereby ameliorating intestinal barrier damage and reducing serum LPS and relevant inflammatory factor levels in the colon, serum, and DRG.
Project description:BackgroundE-52862 (S1RA, 4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl]-morpholine), a novel selective sigma 1 receptor (σ1R) antagonist, has demonstrated efficacy in nociceptive and neuropathic pain models. Our aim was to test if σ1R blockade with E-52862 may modify the signs of neuropathy in Zucker diabetic fatty (ZDF) rats, a type 2 diabetes model.MethodsMechanical and thermal response thresholds were tested on 7-, 13-, 14- and 15-week-old ZDF rats treated with saline or with E-52862 acutely administered on week 13, followed by sub-chronic administration (14 days). Axonal peripheral activity (skin-saphenous nerve preparation) and isolated aorta or mesenteric bed reactivity were analysed in 15-week-old ZDF rats treated with saline or E-52862 and in LEAN rats.ResultsZucker diabetic fatty rats showed significantly decreased thermal withdrawal latency and threshold to mechanical stimulation on week 13 compared to week 7 (prediabetes) and with LEAN animals; single-dose and sub-chronic E-52862 administration restored both parameters to those recorded on week 7. Regarding axonal peripheral activity, E-52862 treatment increased the mean mechanical threshold (77.3 ± 21 mN vs. 19.6 ± 1.5 mN, saline group) and reduced the response evoked by mechanical increasing stimulation (86.4 ± 36.5 vs. 352.8 ± 41.4 spikes) or by repeated mechanical supra-threshold steps (39.4 ± 1.4 vs. 83.5 ± 0.9). E-52862 treatment also restored contractile response to phenylephrine in aorta and mesenteric bed.ConclusionsE-52862 administration reverses neuropathic (behavioural and electrophysiological) and vascular signs in the ZDF rat.SignificanceBlockade of σ1R avoids the development of diabetic neuropathy in rats, and may represent a potentially useful therapeutic approach to peripheral neuropathies in diabetic patients. WHAT DOES THIS STUDY ADD?: This study presents evidences for the potential usefulness of sigma receptor blockade on diabetic neuropathy in rats. The methodology includes behavioural evidences, electrophysiological data and vascular-isolated models.
Project description:Management of oxaliplatin-induced peripheral neuropathy (OIPN) has proven challenging owing to the concern that any OIPN-preventing agents may also decrease the efficacy of the chemotherapeutic agent and fail to reverse established neuronal damage. Nevertheless, targeting redox signaling pathways constitutes a promising therapy in OIPN and we have previously demonstrated the protective role of nuclear factor erythroid-2 related factor 2 (NRF2) in this disorder. Here, we investigated the protective properties of formononetin (FN), a clinical preparation extract, in OIPN. RNA interference experiments revealed that FN protects against OIPN directly through activation of the NRF2 pathway. Further expression profile sequencing showed that FN exerts its protective effect via the NRF2 downstream-oxaliplatin metabolism enzyme, GSTP1. We also demonstrated that FN does not influence the chemotherapeutic function of oxaliplatin, as NRF2 exhibits a different drug metabolic enzyme activation state downstream in colorectal cell lines than that in neurons. Following synthesis of Bio-FN to screen the target binding proteins, we found that FN selectively binds to His129 and Lys131 in the BTB domain of KEAP1. In vivo experiments revealed that FN-induced activation of the NRF2 signaling pathway alleviated the nociceptive sensations in mice. Our findings highlight a new binding mechanism between KEAP1 and isoflavones for activation of the NRF2 system and suggest that pharmacological or therapeutic activation of the NRF2-GSTP1 axis may serve as an effective strategy to prevent or attenuate the progression of OIPN.