Project description:Pathogenic variation in MAPT, GRN, and C9ORF72 accounts for at most only half of frontotemporal lobar degeneration (FTLD) cases with a family history of neurological disease. This suggests additional variants and genes that remain to be identified as risk factors for FTLD. We conducted a case-control genetic association study comparing pathologically diagnosed FTLD patients (n = 94) to cognitively normal older adults (n = 3541), and found suggestive evidence that gene-wide aggregate rare variant burden in MFSD8 is associated with FTLD risk. Because homozygous mutations in MFSD8 cause neuronal ceroid lipofuscinosis (NCL), similar to homozygous mutations in GRN, we assessed rare variants in MFSD8 for relevance to FTLD through experimental follow-up studies. Using post-mortem tissue from middle frontal gyrus of patients with FTLD and controls, we identified increased MFSD8 protein levels in MFSD8 rare variant carriers relative to non-variant carrier patients with sporadic FTLD and healthy controls. We also observed an increase in lysosomal and autophagy-related proteins in MFSD8 rare variant carrier and sporadic FTLD patients relative to controls. Immunohistochemical analysis revealed that MFSD8 was expressed in neurons and astrocytes across subjects, without clear evidence of abnormal localization in patients. Finally, in vitro studies identified marked disruption of lysosomal function in cells from MFSD8 rare variant carriers, and identified one rare variant that significantly increased the cell surface levels of MFSD8. Considering the growing evidence for altered autophagy in the pathogenesis of neurodegenerative disorders, our findings support a role of NCL genes in FTLD risk and suggest that MFSD8-associated lysosomal dysfunction may contribute to FTLD pathology.
Project description:ObjectiveTo investigate the molecular basis of a Belgian family with autosomal recessive adult-onset neuronal ceroid lipofuscinosis (ANCL or Kufs disease [KD]) with pronounced frontal lobe involvement and to expand the findings to a cohort of unrelated Belgian patients with frontotemporal dementia (FTD).MethodsGenetic screening in the ANCL family and FTD cohort (n = 461) was performed using exome sequencing and targeted massive parallel resequencing.ResultsWe identified a homozygous mutation (p.Ile404Thr) in the Cathepsin F (CTSF) gene cosegregating in the ANCL family. No other mutations were found that could explain the disease in this family. All 4 affected sibs developed motor symptoms and early-onset dementia with prominent frontal features. Two of them evolved to akinetic mutism. Disease presentation showed marked phenotypic variation with the onset ranging from 26 to 50 years. Myoclonic epilepsy in one of the sibs was suggestive for KD type A, while epilepsy was not present in the other sibs who presented with clinical features of KD type B. In a Belgian cohort of unrelated patients with FTD, the same heterozygous p.Arg245His mutation was identified in 2 patients who shared a common haplotype.ConclusionsA homozygous CTSF mutation was identified in a recessive ANCL pedigree. In contrast to the previous associations of CTSF with KD type B, our findings suggest that CTSF genetic testing should also be considered in patients with KD type A as well as in early-onset dementia with prominent frontal lobe and motor symptoms.
Project description:Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna-/-;grnb-/- double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.
Project description:Juvenile neuronal ceroid lipofuscinosis is a childhood-onset neurodegenerative disease with prominent symptoms comprising a pediatric dementia syndrome: intellectual decline, mood and behavioral impairments, and loss of adaptive skills. We review the history of neurobehavioral features in juvenile neuronal ceroid lipofuscinosis and the work of the University of Rochester Batten Center to characterize the extent and progression of neurobehavioral symptoms over the disease course, and discuss the relevance of neurobehavioral studies as an aid to understanding the clinical phenotype of juvenile Batten disease and potential targets for intervention.
Project description:The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.
Project description:Targeting neuroinflammation in models for infantile and juvenile forms of neuronal ceroid lipofuscinosis (NCL, CLN disease) with the clinically established immunomodulators fingolimod and teriflunomide significantly attenuates the neurodegenerative phenotype when applied preventively, i.e. before the development of substantial neural damage and clinical symptoms. Here, we show that in a mouse model for the early onset and rapidly progressing CLN1 form, more complex clinical phenotypes like disturbed motor coordination and impaired visual acuity are also ameliorated by immunomodulation. Moreover, we show that the disease outcome can be attenuated even when fingolimod and teriflunomide treatment starts after disease onset, i.e. when neurodegeneration is ongoing and clinical symptoms are detectable. In detail, treatment with either drug led to a reduction in T-cell numbers and microgliosis in the CNS, although not to the same extent as upon preventive treatment. Pharmacological immunomodulation was accompanied by a reduction of axonal damage, neuron loss and astrogliosis in the retinotectal system and by reduced brain atrophy. Accordingly, the frequency of myoclonic jerks and disturbed motor coordination were attenuated. Overall, disease alleviation was remarkably substantial upon therapeutic treatment with both drugs, although less robust than upon preventive treatment. To test the relevance of putative immune-independent mechanisms of action in this model, we treated CLN1 mice lacking mature T- and B-lymphocytes. Immunodeficient CLN1 mice showed, as previously reported, an improved neurological phenotype in comparison with genuine CLN1 mice which could not be further alleviated by either of the drugs, reflecting a predominantly immune-related therapeutic mechanism of action. The present study supports and strengthens our previous view that repurposing clinically approved immunomodulators may alleviate the course of CLN1 disease in human patients, even though diagnosis usually occurs when symptoms have already emerged.
Project description:Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.
Project description:The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases characterized by progressive neurodegeneration and accumulation of autofluorescent storage granules. A 9-month-old Miniature Dachshund presented with NCL-like signs that included disorientation, ataxia, weakness, visual impairment, and behavioral changes. Neurons throughout the CNS contained autofluorescent lysosomal inclusions with granular osmiophilic deposit (GROD) ultrastructure characteristic of classical infantile NCL (INCL). Human INCL is an autosomal recessive disorder that results from mutations in PPT1, a gene that encodes the enzyme palmitoyl protein thioesterase 1 (PPT1; EC 3.1.22). Resequencing of PPT1 from the affected dog revealed that the dog was homozygous for a single nucleotide insertion in exon 8 (PPT1 c.736_737insC), upstream from the His289 active site. Brain tissue from this dog lacked PPT1 activity. The sire and dam of the propositus were heterozygous for the c.736_737insC mutation; whereas, 127 unrelated Dachshunds were homozygous for the wild-type allele. This is the first reported instance of canine NCL caused by a mutation in PPT1.
Project description:The neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative genetic diseases that primarily affect children and have no known cure. A unified clinical rating scale for the juvenile form of NCL has been developed, although it has not been validated in other subtypes and does not give a true measure of the pathophysiological changes occurring during disease progression. In the present study, we have identified candidate biomarkers in blood plasma of NCL disease using multiple proteomic approaches, with the aim of developing a panel of biomarkers that could serve as a metric for therapeutic response. Candidate biomarkers were identified as proteins with levels that significantly differed between patients and controls in both sample sets. The seven candidates identified have previously been associated with neurodegenerative and inflammatory diseases. Multiplex immunoassay based testing was the most efficient and effective evaluation technique and could be employed on a broad scale to track patient response to treatment.
Project description:Mutations in the co- chaperone protein, CSPα, cause an autosomal dominant, adult-neuronal ceroid lipofuscinosis (AD-ANCL). The current understanding of CSPα function exclusively at the synapse fails to explain the autophagy-lysosome pathway (ALP) dysfunction in cells from AD-ANCL patients. Here, we demonstrate unexpectedly that primary dermal fibroblasts from pre-symptomatic mutation carriers recapitulate in vitro features found in the brains of AD-ANCL patients including auto-fluorescent storage material (AFSM) accumulation, CSPα aggregates, increased levels of lysosomal proteins and lysosome enzyme activities. AFSM accumulation correlates with CSPα aggregation and both are susceptible to pharmacological modulation of ALP function. In addition, we demonstrate that endogenous CSPα is present in the lysosome-enriched fractions and co-localizes with lysosome markers in soma, neurites and synaptic boutons. Overexpression of CSPα wild-type (WT) decreases lysotracker signal, secreted lysosomal enzymes and SNAP23-mediated lysosome exocytosis. CSPα WT, mutant and aggregated CSPα are degraded mainly by the ALP but this disease-causing mutation exhibits a faster rate of degradation. Co-expression of both WT and mutant CSPα cause a block in the fusion of autophagosomes/lysosomes. Our data suggest that aggregation-dependent perturbation of ALP function is a relevant pathogenic mechanism for AD-ANCL and supports the use of AFSM or CSPα aggregation as biomarkers for drug screening purposes.