Ontology highlight
ABSTRACT: Statement of significance
Engineering cartilage with physiologically relevant mechanical properties for point-of-care applications represents a major challenge in orthopedics, given the generally low mechanical strengths of traditional hydrogels used in cartilage tissue engineering. In this study, we characterized a new material that possesses high mechanical strength similar to native cartilage, and determined the optimal cell density and scaffold stiffness to achieve the most efficient chondrogenic response from seeded human bone marrow stem cells. Results show robust chondrogenesis and strongly suggest the potential of this material to be applied clinically for point-of-care repair of cartilage defects.
SUBMITTER: Sun AX
PROVIDER: S-EPMC5813286 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
Acta biomaterialia 20170610
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new mat ...[more]