Project description:Our study attempted to explore the mechanism underlying the role of LuxR family transcriptional regulator abaR in biofilm formation by Acinetobacter baumannii. The abaR gene was knocked out in ATCC 17978 strain using homologous recombination method. The growth curve and biofilm formation were measured in the wild type and abaR gene knockdown strains. Transcriptome sequencing was performed in the wild type and abaR gene knockdown strains following 8 h of culture. The growth curve in the abaR gene knockdown strain was similar to that of the wild-type strain. Biofilm formation significantly declined in the abaR gene knockdown strain at 8 and 48 h after culture. A total of 137 differentially expressed genes (DEGs) were obtained including 20 downregulated DEGs and 117 upregulated DEGs. Genes with differential expression were closely related to viral procapsid maturation (GO:0046797), acetoin catabolism (GO:0045150), carbon metabolism (ko01200), and the glycolysis/gluconeogenesis (ko00010)-related pathways. The results of the eight verified expression DEGs were consistent with the results predicted by bioinformatics. AbaR gene knockdown significantly affected biofilm formation by A. baumannii ATCC 17978 strain. The glycolysis/gluconeogenesis pathways were significantly dysregulated and induced by abaR gene knockdown in A. baumannii.
Project description:The protein synthesis inhibitor anisomycin features a unique benzylpyrrolidine system and exhibits potent selective activity against pathogenic protozoa and fungi. It is one of the important effective components in Agricultural Antibiotic120, which has been widely used as naturally-originated agents for treatment of crop decay in China. The chemical synthesis of anisomycin has recently been reported, but the complex process with low productivity made the biosynthesis still to be a vital mainstay in efforts. The biosynthetic gene cluster (BGC) of anisomycin in Streptomyces hygrospinosus var. beijingensis has been identified in our previous work, while poor understanding of the regulatory mechanism limited the yield enhancement via regulation engineering of S. hygrospinosus var. beijingensis. In this study here, we characterized AniF as an indispensable LuxR family transcriptional regulator for the activation of anisomycin biosynthesis. The genetic manipulations of aniF and the real-time quantitative PCR (RT-qPCR) revealed that it positively regulated the transcription of the anisomycin BGC. Moreover, the overexpression of aniF contributed to the improvement of the production of anisomycin and its derivatives. Dissection of the mechanism underlying the function of AniF revealed that it directly activated the transcription of the genes aniR-G involved in anisomycin biosynthesis. Especially, one AniF-binding site in the promoter region of aniR was identified by DNase I footprinting assay and an inverted repeat sequence (5'-GGGC-3') composed of two 4-nt half sites in the protected region was found. Taken together, our systematic study confirmed the positive regulatory role of AniF and might facilitate the future construction of engineering strains with high productivity of anisomycin and its derivatives.
Project description:PAS-LuxR transcriptional regulators are conserved proteins governing polyene antifungal biosynthesis. PteF is the regulator of filipin biosynthesis from Streptomyces avermitilis. Its mutation drastically abates filipin, but also oligomycin production, a macrolide ATP-synthase inhibitor, and delays sporulation; thus, it has been considered a transcriptional activator. Transcriptomic analyses were performed in S. avermitilis DpteF and its parental strain. Both strains were grown in a YEME medium without sucrose, and the samples were taken at exponential and stationary growth phases. A total of 257 genes showed an altered expression in the mutant, most of them at the exponential growth phase. Surprisingly, despite PteF being considered an activator, most of the genes affected showed overexpression, thereby suggesting a negative modulation. The affected genes were related to various metabolic processes, including genetic information processing; DNA, energy, carbohydrate, and lipid metabolism; morphological differentiation; and transcriptional regulation, among others, but were particularly related to secondary metabolite biosynthesis. Notably, 10 secondary metabolite gene clusters out of the 38 encoded by the genome showed altered expression profiles in the mutant, suggesting a regulatory role for PteF that is wider than expected. The transcriptomic results were validated by quantitative reverse-transcription polymerase chain reaction. These findings provide important clues to understanding the intertwined regulatory machinery that modulates antibiotic biosynthesis in Streptomyces.
Project description:Over the past decades, Enterobacter spp. have been identified as challenging and important pathogens. The emergence of multidrug-resistant Enterobacteria especially those that produce Klebsiella pneumoniae carbapenemase has been a very worrying health crisis. Although efforts have been made to unravel the complex mechanisms that contribute to the pathogenicity of different Enterobacter spp., there is very little information associated with AHL-type QS mechanism in Enterobacter spp. Signaling via N-acyl homoserine lactone (AHL) is the most common quorum sensing (QS) mechanism utilized by Proteobacteria. A typical AHL-based QS system involves two key players: a luxI gene homolog to synthesize AHLs and a luxR gene homolog, an AHL-dependent transcriptional regulator. These signaling molecules enable inter-species and intra-species interaction in response to external stimuli according to population density. In our recent study, we reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. Whole genome sequencing and in silico analysis revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easI/R, in strain L1. In a QS system, a LuxR transcriptional protein detects and responds to the concentration of a specific AHL controlling gene expression. In E. asburiae strain L1, EasR protein binds to its cognate AHLs, N-butanoyl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL), modulating the expression of targeted genes. In this current work, we have cloned the 693 bp luxR homolog of strain L1 for further characterization. The functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription were tested and validated with β-galactosidase assays. Higher β-galactosidase activities were detected for cells harboring EasR, indicating EasR is a functional transcriptional regulator. This is the first report documenting the cloning and characterization of transcriptional regulator, luxR homolog of E. asburiae.
Project description:In a previous study, a linezolid analogue, called 10f, was synthesized. The 10f molecule has an antimicrobial activity comparable to that of the parental compound. In this study, we isolated a Staphylococcus aureus (S. aureus) strain resistant to 10f. After sequencing the 23S rRNA and the ribosomal proteins L3 (rplC) and L4 (rplD) genes, we found that the resistant phenotype was associated with a single mutation G359U in rplC bearing to the missense mutation G120V in the L3 protein. The identified mutation is far from the peptidyl transferase center, the oxazolidinone antibiotics binding site, thus suggesting that we identified a new and interesting example of a long-range effect in the ribosome structure.
Project description:Actinomycetes bacteria produce diverse bioactive molecules that are useful as drug seeds. To improve their yield, researchers often optimize the fermentation medium. However, exactly how the extracellular chemicals present in the medium activate secondary metabolite gene clusters remains unresolved. BR-1, a β-carboline compound, was recently identified as a chemical signal that enhanced reveromycin A production in Streptomyces sp. SN-593. Here we show that BR-1 specifically bound to the transcriptional regulator protein RevU in the reveromycin A biosynthetic gene cluster, and enhanced RevU binding to its promoter. RevU belongs to the LuxR family regulator that is widely found in bacteria. Interestingly, BR-1 and its derivatives also enhanced the production of secondary metabolites in other Streptomyces species. Although LuxR-N-acyl homoserine lactone systems have been characterized in Gram-negative bacteria, we revealed LuxR-β-carboline system in Streptomyces sp. SN-593 for the production of secondary metabolites. This study might aid in understanding hidden chemical communication by β-carbolines.
Project description:In Corynebacterium glutamicum, the acetate-activating enzymes phosphotransacetylase and acetate kinase and the glyoxylate cycle enzymes isocitrate lyase and malate synthase are coordinately up-regulated in the presence of acetate in the growth medium. This regulation is due to transcriptional control of the respective pta-ack operon and the aceA and aceB genes, brought about at least partly by the action of the negative transcriptional regulator RamB. Using cell extracts of C. glutamicum and employing DNA affinity chromatography, mass spectrometry, and peptide mass fingerprinting, we identified a LuxR-type transcriptional regulator, designated RamA, which binds to the pta-ack and aceA/aceB promoter regions. Inactivation of the ramA gene in the genome of C. glutamicum resulted in mutant RG2. This mutant was unable to grow on acetate as the sole carbon and energy source and, in comparison to the wild type of C. glutamicum, showed very low specific activities of phosphotransacetylase, acetate kinase, isocitrate lyase, and malate synthase, irrespective of the presence of acetate in the medium. Comparative transcriptional cat fusion experiments revealed that this deregulation takes place at the level of transcription. By electrophoretic mobility shift analysis, purified His-tagged RamA protein was shown to bind specifically to the pta-ack and the aceA/aceB promoter regions, and deletion and mutation studies revealed in both regions two binding motifs each consisting of tandem A/C/TG4-6T/C or AC4-5A/G/T stretches separated by four or five arbitrary nucleotides. Our data indicate that RamA represents a novel LuxR-type transcriptional activator of genes involved in acetate metabolism of C. glutamicum.
Project description:Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria.
Project description:Stomach acid provides a significant innate barrier to the entry of the food-borne pathogen Listeria monocytogenes into the human gastrointestinal tract. A key determinant of acid resistance in this bacterium is the conserved glutamate decarboxylase system, GadD2 (encoded by the gadT2D2 operon), which helps to maintain the intracellular pH during exposure to gastric acid. In this study, we identified a premature stop codon in a gene located immediately downstream of the gadT2D2 operon that was highly linked to an acid-sensitive phenotype. When this open reading frame was restored through homologous recombination, an acid-resistant phenotype was restored. Through a series of genetic, transcriptomic, and survival experiments, we established that this gene, which we designated gadR, encodes a transcriptional regulator of the gadT2D2 operon. GadR belongs to the RofA family of regulators, primarily found in streptococci, where they are involved in regulating virulence. The data further showed that gadR plays a critical role in the development of acid resistance in response to mild acid exposure, a response that is known as the adaptive acid tolerance response (ATR). A deletion analysis of the gadT2D2 promoter region identified two 18-bp palindromic sequences that are required for the GadR-mediated induction of gadT2D2, suggesting that they act as binding sites for GadR. Overall, this study uncovers a new RofA-like regulator of acid resistance in L. monocytogenes, which plays a significant role in both growth phase-dependent acid resistance and ATR and accounts for previously observed strain-to-strain differences in survival at low pH.IMPORTANCEThe ability to survive the acidic conditions found in the stomach is crucial for the food-borne pathogen Listeria monocytogenes to gain access to the mammalian gastrointestinal tract. Little is currently known about how acid resistance is regulated in this pathogen and why this trait is highly variable between strains. Here, we used comparative genomics to identify a novel RofA-family transcriptional regulator, GadR, that controls the development of acid resistance. The RofA family of regulators was previously found only in a small group of bacterial pathogens, including streptococci, where they regulate virulence properties. We show that gadR encodes the dominant regulator of acid resistance in L. monocytogenes and that its sequence variability accounts for previously observed differences between strains in this trait. Together, these findings significantly advance our understanding of how this important pathogen copes with acid stress and suggest a potential molecular target to aid its control in the food chain.