Ontology highlight
ABSTRACT: Background
Recently discovered drugs that target epigenetic modifying complexes are providing new treatment options for a range of cancers that affect patients of reproductive age. Although these drugs provide new therapies, it is likely that they will also affect epigenetic programming in sperm and oocytes. A promising target is Enhancer of Zeste 2 (EZH2), which establishes the essential epigenetic modification, H3K27me3, during development.Results
In this study, we demonstrate that inhibition of EZH1/2 with the clinically relevant drug, tazemetostat, severely depletes H3K27me3 in growing oocytes of adult female mice. Moreover, EZH2 inhibition depleted H3K27me3 in primary oocytes and in fetal oocytes undergoing epigenetic reprogramming. Surprisingly, once depleted, H3K27me3 failed to recover in growing oocytes or in fetal oocytes.Conclusion
Together, these data demonstrate that drugs targeting EZH2 significantly affect the germline epigenome and, based on genetic models with oocyte-specific loss of EZH2 function, are likely to affect outcomes in offspring.
SUBMITTER: Prokopuk L
PROVIDER: S-EPMC5836460 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
Prokopuk Lexie L Hogg Kirsten K Western Patrick S PS
Clinical epigenetics 20180305
<h4>Background</h4>Recently discovered drugs that target epigenetic modifying complexes are providing new treatment options for a range of cancers that affect patients of reproductive age. Although these drugs provide new therapies, it is likely that they will also affect epigenetic programming in sperm and oocytes. A promising target is Enhancer of Zeste 2 (EZH2), which establishes the essential epigenetic modification, H3K27me3, during development.<h4>Results</h4>In this study, we demonstrate ...[more]