Project description:Chromosome duplication normally initiates through the assembly of replication fork complexes at defined origins. DNA synthesis by any one fork is thought to cease when it meets another travelling in the opposite direction, at which stage the replication machinery may simply dissociate before the nascent strands are finally ligated. But what actually happens is not clear. Here we present evidence consistent with the idea that every fork collision has the potential to threaten genomic integrity. In Escherichia coli this threat is kept at bay by RecG DNA translocase and by single-strand DNA exonucleases. Without RecG, replication initiates where forks meet through a replisome assembly mechanism normally associated with fork repair, replication restart and recombination, establishing new forks with the potential to sustain cell growth and division without an active origin. This potential is realized when roadblocks to fork progression are reduced or eliminated. It relies on the chromosome being circular, reinforcing the idea that replication initiation is triggered repeatedly by fork collision. The results reported raise the question of whether replication fork collisions have pathogenic potential for organisms that exploit several origins to replicate each chromosome.
Project description:Chromosome duplication normally initiates via the assembly of replication fork complexes at defined origins. DNA synthesis by any one fork is thought to cease when it meets another travelling in the opposite direction, at which stage the replication machinery may simply dissociate before the nascent strands are finally ligated. But what actually happens is not clear. Here we present evidence consistent with the idea that every fork collision has the potential to trigger re-replication of the already replicated DNA, thus posing a threat to genomic integrity. In Escherichia coli this threat is kept at bay by the RecG DNA translocase. Without RecG, replication initiates where forks meet, establishing new forks with the potential to sustain cell growth and division in the absence of an active origin. The studies reported raise the question of how eukaryotic and archaeal cells are able to exploit multiple origins for the duplication of each chromosome without any apparent ill effect from the consequent multiple fork collisions.
Project description:As healthcare capacities in the US and Europe reach their limits due to a surge in the COVID-19 pandemic, both regions enter the 2020-2021 influenza season. Southern hemisphere countries that had suppressed influenza seasons provide a hopeful example, but the lack of reduction in influenza in the 2019-2020 influenza season and heterogeneity in nonpharmaceutical and pharmaceutical interventions show that we cannot assume the same effect will occur globally. The US and Europe must promote the implementation and continuation of these measures in order to prevent additional burden to healthcare systems due to influenza.
Project description:While cell signaling devotees tend to think of the endoplasmic reticulum (ER) as a Ca(2+) store, those who study protein synthesis tend to see it more as site for protein maturation, or even degradation when proteins do not fold properly. These two worldviews collide when inositol 1,4,5-trisphosphate (IP(3)) receptors are activated, since in addition to acting as release channels for stored ER Ca(2+), IP(3) receptors are rapidly destroyed via the ER-associated degradation (ERAD) pathway, a ubiquitination- and proteasome-dependent mechanism that clears the ER of aberrant proteins. Here we review recent studies showing that activated IP(3) receptors are ubiquitinated in an unexpectedly complex manner, and that a novel complex composed of the ER membrane proteins SPFH1 and SPFH2 (erlin 1 and 2) binds to IP(3) receptors immediately after they are activated and mediates their ERAD. Remarkably, it seems that the conformational changes that underpin channel opening make IP(3) receptors resemble aberrant proteins, which triggers their binding to the SPFH1/2 complex, their ubiquitination and extraction from the ER membrane and finally, their degradation by the proteasome. This degradation of activated IP(3) receptors by the ERAD pathway serves to reduce the sensitivity of ER Ca(2+) stores to IP(3) and may protect cells against deleterious effects of over-activation of Ca(2+) signaling pathways.
Project description:Eukaryotes are typically depicted as descendants of archaea, but their genomes are evolutionary chimeras with genes stemming from archaea and bacteria. Which prokaryotic heritage predominates? Here, we have clustered 19,050,992 protein sequences from 5,443 bacteria and 212 archaea with 3,420,731 protein sequences from 150 eukaryotes spanning six eukaryotic supergroups. By downsampling, we obtain estimates for the bacterial and archaeal proportions. Eukaryotic genomes possess a bacterial majority of genes. On average, the majority of bacterial genes is 56% overall, 53% in eukaryotes that never possessed plastids, and 61% in photosynthetic eukaryotic lineages, where the cyanobacterial ancestor of plastids contributed additional genes to the eukaryotic lineage. Intracellular parasites, which undergo reductive evolution in adaptation to the nutrient rich environment of the cells that they infect, relinquish bacterial genes for metabolic processes. Such adaptive gene loss is most pronounced in the human parasite Encephalitozoon intestinalis with 86% archaeal and 14% bacterial derived genes. The most bacterial eukaryote genome sampled is rice, with 67% bacterial and 33% archaeal genes. The functional dichotomy, initially described for yeast, of archaeal genes being involved in genetic information processing and bacterial genes being involved in metabolic processes is conserved across all eukaryotic supergroups.
Project description:Obesity has reached epidemic proportions in the United States and in much of the westernized world, contributing to considerable morbidity. Several of these obesity-related morbidities are associated with greater risk for death with coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 penetrates human cells through direct binding with angiotensin-converting enzyme 2 receptors on the cell surface. Angiotensin-converting enzyme 2 expression in adipose tissue is higher than that in lung tissue, which means that adipose tissue may be vulnerable to COVID-19 infection. Obese patients also have worse outcomes with COVID-19 infection, including respiratory failure, need for mechanical ventilation, and higher mortality. Clinicians need to be more aggressive when treating obese, especially severely obese, patients with COVID-19 infection.
Project description:Optimists, by definition, make inaccurate (overly positive) predictions regarding future event outcomes. Adults favor optimists as social partners. If children also prefer optimists, that preference could indicate early social benefits of being optimistic and might also shape how and what children learn regarding the likelihood of future outcomes. The present study thus sought to determine how children integrate the conflicting dimensions of optimism and accuracy in their social (friendship) preferences. Across two experiments (N = 133) 3- to 6-year-old children chose optimists over realists as social partners even if they were able to correctly identify the realist as being the most accurate of the two. However, when children made mistakes in identification, those mistakes primarily took the form of identifying the optimist as most accurate. These findings suggest that young children weigh optimism more heavily than accuracy in their affiliative relationships. Misidentifying the optimist as accurate also supports the notion that children have a bias to expect others to provide positive information. Further, a social preference for optimists might impact children's abilities to learn the true likelihood of event outcomes, as affiliating with optimists may result in setting oneself up to receive more positive (mis)information in the future. Such a preference suggests a mechanism by which optimism is perpetuated and points to potential social benefits that derive from being optimistic.
Project description:Chromosome duplication normally initiates via the assembly of replication fork complexes at defined origins. DNA synthesis by any one fork is thought to cease when it meets another travelling in the opposite direction, at which stage the replication machinery may simply dissociate before the nascent strands are finally ligated. But what actually happens is not clear. Here we present evidence consistent with the idea that every fork collision has the potential to trigger re-replication of the already replicated DNA, thus posing a threat to genomic integrity. In Escherichia coli this threat is kept at bay by the RecG DNA translocase. Without RecG, replication initiates where forks meet, establishing new forks with the potential to sustain cell growth and division in the absence of an active origin. The studies reported raise the question of how eukaryotic and archaeal cells are able to exploit multiple origins for the duplication of each chromosome without any apparent ill effect from the consequent multiple fork collisions. Measurement of replication dynamics (marker frequency analysis; MFA) for E. coli strains, including wild-type and various mutants.
Project description:Based primarily on 16S rRNA sequence comparisons, life has been broadly divided into the three domains of Bacteria, Archaea, and Eukarya. Archaea is further classified into Crenarchaea and Euryarchaea. Archaea generally thrive in extreme environments as assessed by temperature, pH, and salinity. For many prokaryotic organisms, ribosomal proteins (RP), transcription/translation factors, and chaperone genes tend to be highly expressed. A gene is predicted highly expressed (PHX) if its codon usage is rather similar to the average codon usage of at least one of the RP, transcription/translation factors, and chaperone gene classes and deviates strongly from the average gene of the genome. The thermosome (Ths) chaperonin family represents the most salient PHX genes among Archaea. The chaperones Trigger factor and HSP70 have overlapping functions in the folding process, but both of these proteins are lacking in most archaea where they may be substituted by the chaperone prefoldin. Other distinctive PHX proteins of Archaea, absent from Bacteria, include the proliferating cell nuclear antigen PCNA, a replication auxiliary factor responsible for tethering the catalytic unit of DNA polymerase to DNA during high-speed replication, and the acidic RP P0, which helps to initiate mRNA translation at the ribosome. Other PHX genes feature Cell division control protein 48 (Cdc48), whereas the bacterial septation proteins FtsZ and minD are lacking in Crenarchaea. RadA is a major DNA repair and recombination protein of Archaea. Archaeal genomes feature a strong Shine-Dalgarno ribosome-binding motif more pronounced in Euryarchaea compared with Crenarchaea.
Project description:Papillomaviruses infect and replicate in keratinocytes, but viral proteins are initially expressed at low levels and there is no effective and quantitative method to determine the efficiency of infection on a cell-to-cell basis. Here we describe human papillomavirus (HPV) genomes that express marker proteins (antibiotic resistance genes and Green Fluorescent Protein), and can be used to elucidate early stages in HPV infection of primary keratinocytes. To generate these recombinant genomes, the late region of the oncogenic HPV18 genome was replaced by CpG free marker genes. Insertion of these exogenous genes did not affect early replication, and had only minimal effects on early viral transcription. When introduced into primary keratinocytes, the recombinant marker genomes gave rise to drug-resistant keratinocyte colonies and cell lines, which maintained the extrachromosomal recombinant genome long-term. Furthermore, the HPV18 "marker" genomes could be packaged into viral particles (quasivirions) and used to infect primary human keratinocytes in culture. This resulted in the outgrowth of drug-resistant keratinocyte colonies containing replicating HPV18 genomes. In summary, we describe HPV18 marker genomes that can be used to quantitatively investigate many aspects of the viral life cycle.