Project description:Single-cell computational pipelines involve two critical steps: organizing cells (clustering) and identifying the markers driving this organization (differential expression analysis). State-of-the-art pipelines perform differential analysis after clustering on the same dataset. We observe that because clustering "forces" separation, reusing the same dataset generates artificially low p values and hence false discoveries. We introduce a valid post-clustering differential analysis framework, which corrects for this problem. We provide software at https://github.com/jessemzhang/tn_test.
Project description:Motivation:Single-cell RNA-sequencing (scRNA-seq) has brought the study of the transcriptome to higher resolution and makes it possible for scientists to provide answers with more clarity to the question of 'differential expression'. However, most computational methods still stick with the old mentality of viewing differential expression as a simple 'up or down' phenomenon. We advocate that we should fully embrace the features of single cell data, which allows us to observe binary (from Off to On) as well as continuous (the amount of expression) regulations. Results:We develop a method, termed SC2P, that first identifies the phase of expression a gene is in, by taking into account of both cell- and gene-specific contexts, in a model-based and data-driven fashion. We then identify two forms of transcription regulation: phase transition, and magnitude tuning. We demonstrate that compared with existing methods, SC2P provides substantial improvement in sensitivity without sacrificing the control of false discovery, as well as better robustness. Furthermore, the analysis provides better interpretation of the nature of regulation types in different genes. Availability and implementation:SC2P is implemented as an open source R package publicly available at https://github.com/haowulab/SC2P. Supplementary information:Supplementary data are available at Bioinformatics online.
Project description:Single-cell RNA sequencing (scRNA-seq) offers a high-resolution molecular view into complex tissues, but suffers from high levels of technical noise which frustrates efforts to compare the gene expression programs of different cell types. "Spike-in" RNA standards help control for technical variation in scRNA-seq, but using them with recently developed, ultra-scalable scRNA-seq methods based on combinatorial indexing is not feasible. Here, we describe a simple and cost-effective method for normalizing transcript counts and subtracting technical variability that improves differential expression analysis in scRNA-seq. The method affixes a ladder of synthetic single-stranded DNA oligos to each cell that appears in its RNA-seq library. With improved normalization we explore chemical perturbations with broad or highly specific effects on gene regulation, including RNA pol II elongation, histone deacetylation, and activation of the glucocorticoid receptor. Our methods reveal that inhibiting histone deacetylation prevents cells from executing their canonical program of changes following glucocorticoid stimulation.
Project description:BackgroundRecent development of single cell sequencing technologies has made it possible to identify genes with different expression (DE) levels at the cell type level between different groups of samples. In this article, we propose to borrow information through known biological networks to increase statistical power to identify differentially expressed genes (DEGs).ResultsWe develop MRFscRNAseq, which is based on a Markov random field (MRF) model to appropriately accommodate gene network information as well as dependencies among cell types to identify cell-type specific DEGs. We implement an Expectation-Maximization (EM) algorithm with mean field-like approximation to estimate model parameters and a Gibbs sampler to infer DE status. Simulation study shows that our method has better power to detect cell-type specific DEGs than conventional methods while appropriately controlling type I error rate. The usefulness of our method is demonstrated through its application to study the pathogenesis and biological processes of idiopathic pulmonary fibrosis (IPF) using a single-cell RNA-sequencing (scRNA-seq) data set, which contains 18,150 protein-coding genes across 38 cell types on lung tissues from 32 IPF patients and 28 normal controls.ConclusionsThe proposed MRF model is implemented in the R package MRFscRNAseq available on GitHub. By utilizing gene-gene and cell-cell networks, our method increases statistical power to detect differentially expressed genes from scRNA-seq data.
Project description:We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.
Project description:BackgroundSingle-cell RNA Sequencing is gaining popularity in recent years. Compared to bulk RNA-Seq, single-cell RNA Sequencing allows the gene expression being measured within individual cells instead of mean gene expression levels across all cells in the sample. Thus, cell-to-cell variation of gene expressions could be examined. Gene differential expression analysis remains the major purpose in most single-cell RNA sequencing experiments and many methods have been developed in recent years to conduct gene differential expression analysis for single-cell RNA sequencing data.ResultsThrough simulation studies and real data examples, we evaluated the performance of five open-source popular methods used for gene differential expression analysis in single-cell RNA sequencing data. The five methods included DEsingle (Zero-inflated negative binomial model), Linnorm (Empirical Bayes method on transformed count data using the limma package), monocle (An approximate Chi-Square likelihood ratio test), MAST (A generalized linear hurdle model), and DESeq2 (A generalized linear model with empirical Bayes approach and also commonly used for bulk RNA sequencing differential express analyses). We assessed the false discovery rate (FDR) control, sensitivity, specificity, accuracy, and area under the receiver operating characteristics (AUROC) curve for all five methods under different sample sizes, distribution assumptions, and proportions of zeros in the data.ConclusionsWe found the MAST method performed the best among the five methods compared with the largest AUROC values across all tested sample sizes and different proportion of truly differential expressed genes, when the data followed negative binomial distributions. When the sample size increased to 100 in each group, the MAST method showed the best performance with the highest AUROC regardless of the data distributions. If the excess zeros were first filtered out before the gene differential analyses, the DESingle, Linnorm, and DESeq2 performed relatively better than the MAST and the monocle methods with higher AUROC values.
Project description:Despite the advances in single-cell transcriptomics, the reconstruction of gene regulatory networks remains challenging. Both the large amount of zero counts in experimental data and the lack of a consensus preprocessing pipeline for single-cell RNA sequencing (scRNA-seq) data make it hard to infer networks. Imputation can be applied in order to enhance gene-gene correlations and facilitate downstream analysis. However, it is unclear what consequences imputation methods have on the reconstruction of gene regulatory networks. To study this, we evaluate the differences on the performance and structure of reconstructed networks before and after imputation in single-cell data. We observe an inflation of gene-gene correlations that affects the predicted network structures and may decrease the performance of network reconstruction in general. However, within the modest limits of achievable results, we also make a recommendation as to an advisable combination of algorithms while warning against the indiscriminate use of imputation before network reconstruction in general.
Project description:BackgroundThe development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis.ResultsWe present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types.ConclusionsThe DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .
Project description:Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene regulatory programs along continuous biological processes. While many methods have been developed to infer the pseudotemporal trajectories of cells within a biological sample, it remains a challenge to compare pseudotemporal patterns with multiple samples (or replicates) across different experimental conditions. Here, we introduce Lamian, a comprehensive and statistically-rigorous computational framework for differential multi-sample pseudotime analysis. Lamian can be used to identify changes in a biological process associated with sample covariates, such as different biological conditions while adjusting for batch effects, and to detect changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially reduces sample-specific false discoveries that are not generalizable to new samples. Using both real scRNA-seq and simulation data, including an analysis of differential immune response programs between COVID-19 patients with different disease severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous biological processes.
Project description:MotivationEach year, the number of published bulk and single-cell RNA-seq datasets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene's transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell-type identification.ResultsWe present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq datasets, and the first package to conduct a 'classical' DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. In addition, we present novel potential DTU applications like the identification of cell-type specific transcript isoforms as biomarkers.Availability and implementationThe R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/.Supplementary informationSupplementary data are available at Bioinformatics online.