Unknown

Dataset Information

0

Characterization of Human iPSC-RPE on a Prosthetic Bruch's Membrane Manufactured From Silk Fibroin.


ABSTRACT:

Purpose

RPE cell transplantation as a potential treatment for AMD has been extensively investigated; however, in AMD, ultrastructural damage affects both the RPE and its underlying matrix support, the Bruch's membrane (BrM). An RPE monolayer supported by a surrogate scaffold could thus provide a more effective approach to cell-based therapy for AMD. Toward this goal, we aimed to establish a functional human induced pluripotent stem cell-derived (hiPSC)-RPE monolayer on a Bombyx mori silk fibroin (BMSF) scaffold.

Methods

RPE differentiated from five distinct hiPSC lines were cultured on BMSF membrane coated with extracellular matrix (ECM, COL1), and either regular tissue culture plastic or Transwell coated with ECM (LAM-TCP). Morphologic, gene and protein expression, and functional characteristics of the hiPSC-RPE cultured on different membranes were compared in longitudinal experiments spanning 1 day to ≥3 months.

Results

The hiPSC-RPE monolayers on ECM-coated BMSF and TCP could be maintained in culture for ≥3 months and displayed RPE-characteristic morphology, pigmentation, polarity, and expression of RPE signature genes and proteins. Furthermore, hiPSC-RPE on both ECM-coated BMSF and TCP displayed robust expression and secretion of several basement membrane proteins. Importantly, hiPSC-RPE cells on COL1-BMSF and LAM-TCP showed similar efficacy in the phagocytosis and degradation of photoreceptor outer segments.

Conclusions

A biomaterial scaffold manufactured from silk fibroin supports the maturation and long-term survival of a functional hiPSC-RPE monolayer. This has significant implications for both in vitro disease modeling and in vivo cell replacement therapy.

SUBMITTER: Galloway CA 

PROVIDER: S-EPMC5989661 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of Human iPSC-RPE on a Prosthetic Bruch's Membrane Manufactured From Silk Fibroin.

Galloway Chad A CA   Dalvi Sonal S   Shadforth Audra M A AMA   Suzuki Shuko S   Wilson Molly M   Kuai David D   Hashim Ali A   MacDonald Leslie A LA   Gamm David M DM   Harkin Damien G DG   Singh Ruchira R  

Investigative ophthalmology & visual science 20180601 7


<h4>Purpose</h4>RPE cell transplantation as a potential treatment for AMD has been extensively investigated; however, in AMD, ultrastructural damage affects both the RPE and its underlying matrix support, the Bruch's membrane (BrM). An RPE monolayer supported by a surrogate scaffold could thus provide a more effective approach to cell-based therapy for AMD. Toward this goal, we aimed to establish a functional human induced pluripotent stem cell-derived (hiPSC)-RPE monolayer on a Bombyx mori silk  ...[more]

Similar Datasets

| S-EPMC4849865 | biostudies-literature
| S-EPMC2676197 | biostudies-literature
| S-EPMC6829413 | biostudies-literature
| S-EPMC8540890 | biostudies-literature
| S-EPMC4143793 | biostudies-other
| S-EPMC9502556 | biostudies-literature
| S-EPMC10891107 | biostudies-literature
| S-EPMC7870640 | biostudies-literature
| S-EPMC8078582 | biostudies-literature
| S-EPMC8289228 | biostudies-literature