Unknown

Dataset Information

0

Exposure-Lag-Response in Longitudinal Studies: Application of Distributed-Lag Nonlinear Models in an Occupational Cohort.


ABSTRACT: Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may not fully capture these relationships. We applied penalized and unpenalized distributed-lag nonlinear models (DLNMs) with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica exposure and mortality from lung cancer and nonmalignant respiratory disease in a cohort study of 2,342 California diatomaceous earth workers followed during 1942-2011. We also assessed associations using simple measures of cumulative exposure assuming linear exposure-response and constant lag-response. Measures of association from DLNMs were generally higher than those from simpler models. Rate ratios from penalized DLNMs corresponding to average daily exposures of 0.4 mg/m3 during lag years 31-50 prior to the age of observed cases were 1.47 (95% confidence interval (CI): 0.92, 2.35) for lung cancer mortality and 1.80 (95% CI: 1.14, 2.85) for nonmalignant respiratory disease mortality. Rate ratios from the simpler models for the same exposure scenario were 1.15 (95% CI: 0.89, 1.48) and 1.23 (95% CI: 1.03, 1.46), respectively. Longitudinal cohort studies of prolonged exposures and chronic health outcomes should explore methods allowing for flexibility and nonlinearities in the exposure-lag-response.

SUBMITTER: Neophytou AM 

PROVIDER: S-EPMC6030974 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exposure-Lag-Response in Longitudinal Studies: Application of Distributed-Lag Nonlinear Models in an Occupational Cohort.

Neophytou Andreas M AM   Picciotto Sally S   Brown Daniel M DM   Gallagher Lisa E LE   Checkoway Harvey H   Eisen Ellen A EA   Costello Sadie S  

American journal of epidemiology 20180701 7


Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may not fully capture these relationships. We applied penalized and unpenalized distributed-lag nonlinear models (DLNMs) with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica exposure and mortality from l  ...[more]

Similar Datasets

| S-EPMC9293054 | biostudies-literature
| S-EPMC4098103 | biostudies-literature
| S-EPMC10724118 | biostudies-literature
| S-EPMC10859672 | biostudies-literature
| S-EPMC2883305 | biostudies-literature
| S-EPMC4021419 | biostudies-literature
| S-EPMC6328049 | biostudies-literature
| S-EPMC3944968 | biostudies-literature
| S-EPMC8909720 | biostudies-literature
| S-EPMC6454578 | biostudies-literature