DNA damage response signaling as a predictive biomarker and synergistic therapeutic target for anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer.
DNA damage response signaling as a predictive biomarker and synergistic therapeutic target for anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer.
Project description:Immunotherapy response score (IRS) integrates tumor mutation burden (TMB) and quantitative expression biomarkers to predict anti-PD-1/PD-L1 [PD-(L)1] monotherapy benefit. Here, we evaluated IRS in additional cohorts. Patients from an observational trial (NCT03061305) treated with anti-PD-(L)1 monotherapy were included and assigned to IRS-High (-H) versus -Low (-L) groups. Associations with real-world progression-free survival (rwPFS) and overall survival (OS) were determined by Cox proportional hazards (CPH) modeling. Those with available PD-L1 IHC treated with anti-PD-(L)1 with or without chemotherapy were separately assessed. Patients treated with PD-(L)1 and/or chemotherapy (five relevant tumor types) were assigned to three IRS groups [IRS-L divided into IRS-Ultra-Low (-UL) and Intermediate-Low (-IL), and similarly assessed]. In the 352 patient anti-PD-(L)1 monotherapy validation cohort (31 tumor types), IRS-H versus IRS-L patients had significantly longer rwPFS and OS. IRS significantly improved CPH associations with rwPFS and OS beyond microsatellite instability (MSI)/TMB alone. In a 189 patient (10 tumor types) PD-L1 IHC comparison cohort, IRS, but not PD-L1 IHC nor TMB, was significantly associated with anti-PD-L1 rwPFS. In a 1,103-patient cohort (from five relevant tumor types), rwPFS did not significantly differ in IRS-UL patients treated with chemotherapy versus chemotherapy plus anti-PD-(L)1, nor in IRS-H patients treated with anti-PD-(L)1 versus anti-PD-(L)1 + chemotherapy. IRS associations were consistent across subgroups, including both Europeans and non-Europeans. These results confirm the utility of IRS utility for predicting pan-solid tumor PD-(L)1 monotherapy benefit beyond available biomarkers and demonstrate utility for informing on anti-PD-(L)1 and/or chemotherapy treatment.SignificanceThis study confirms the utility of the integrative IRS biomarker for predicting anti-PD-L1/PD-1 benefit. IRS significantly improved upon currently available biomarkers, including PD-L1 IHC, TMB, and MSI status. Additional utility for informing on chemotherapy, anti-PD-L1/PD-1, and anti-PD-L1/PD-1 plus chemotherapy treatments decisions is shown.
Project description:Immunotherapy has emerged as an effective treatment for various types of cancers. Recent studies have highlighted a significant correlation between the gut microbiome and patients' response to immunotherapy. Several characteristics of the gut microbiome, such as community structures, taxonomic compositions, and molecular functions, have been identified as crucial biomarkers for predicting immunotherapy response and immune-related adverse events (irAEs). Unlike other -omics, the gut microbiome can serve as not only biomarkers but also potential targets for enhancing the efficacy of immunotherapy. Approaches for modulating the gut microbiome include probiotics/prebiotics supplementation, dietary interventions, fecal microbiota transplantation (FMT), and antibiotic administration. This review primarily focuses on elucidating the potential role of the gut microbiome in predicting the response to cancer immunotherapy and improving its efficacy. Notably, we explore reasons behind inconsistent findings observed in different studies, and highlight the underlying benefits of antibiotics in liver cancer immunotherapy.
Project description:Tumor immune infiltrates are associated with tumor prognosis in many cancer types. However, their capacity to predict the efficacy of checkpoint inhibitors is poorly documented. We generate three signatures that evaluate in different ways these infiltrates: lymphoid- and myeloid-alone signatures, and a combined signature of both named the TIL (tumor-infiltrating lymphocyte) transcriptomic signature. We evaluate these signatures in The Cancer Genome Atlas Program (TCGA) Pan-Cancer cohort and four cohorts comprising patients with melanoma, lung, and head and neck cancer treated with anti-PD-1 or anti-CTLA-4 therapies. We observe using TCGA Pan-Cancer cohort that this TIL or lymphoid-alone signature accurately estimates prognosis in most cancer types and outperforms histological TIL evaluation or myeloid signature alone. Both TIL and lymphoid signatures are correlated with response rate to immunotherapy. Combining lymphoid signature or TIL with tumor mutational burden generates a score that is highly efficient in predicting response to immunotherapy. In different series of patients treated with checkpoint inhibitors for non-small cell lung cancer, head and neck cancer, and melanoma, we observed that TIL or lymphoid signature were associated with outcome. These data demonstrate that a simple TIL or lymphoid signature could be used as a Pan-Cancer prognostic and predictive biomarker to estimate patient survival under checkpoint inhibitors.
Project description:BACKGROUND:Several cancer types harbor alterations in the gene encoding AT-Rich Interactive Domain-containing protein 1A (ARID1A), but there are no approved therapies to address these alterations. Recent studies have shown that ARID1A deficiency compromises mismatch repair proteins. Herein, we analyzed 3403 patients who had tumor tissue next-generation sequencing. FINDINGS:Among nine cancer subtypes with >5% prevalence of ARID1A alterations, microsatellite instability-high as well as high tumor mutational burden was significantly more frequent in ARID1A-altered versus ARID1A wild-type tumors (20% vs 0.9%, p<0.001; and 26% vs 8.4%, p<0.001, respectively). Median progression-free survival (PFS) after checkpoint blockade immunotherapy was significantly longer in the patients with ARID1A-altered tumors (n=46) than in those with ARID1A wild-type tumors (n=329) (11 months vs 4 months, p=0.006). Also, multivariate analysis showed that ARID1A alterations predicted longer PFS after checkpoint blockade (HR (95% CI), 0.61 (0.39 to 0.94), p=0.02) and this result was independent of microsatellite instability or mutational burden; median overall survival time was also longer in ARID1A-altered versus wild-type tumors (31 months vs 20 months), but did not reach statistical significance (p=0.13). CONCLUSIONS:Our findings suggest that ARID1A alterations merit further exploration as a novel biomarker correlating with better outcomes after checkpoint blockade immunotherapy.
Project description:BACKGROUND:While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. METHODS:We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. RESULTS:Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. CONCLUSIONS:Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
Project description:BackgroundA sequential combination of radiochemotherapy/endocrinotherapy and cytokine-induced killer cell (CIK) infusion has been shown to be an effective therapy for post-mastectomy breast cancer based on statistical analysis of the patient population. However, whether an individual could obtain an improved prognosis from CIK cell-based treatment remains unknown. In the present study, we focused on immune microenvironment regulation and specifically investigated the relationship between PD-L1 expression and survival benefit from CIK immunotherapy in breast cancer.MethodsA total of 310 postoperative breast cancer patients who received comprehensive treatment were enrolled in this retrospective study, including 160 patients in the control group (received chemotherapy/radiotherapy/endocrinotherapy) and 150 patients in the CIK cell treatment group (received chemotherapy/radiotherapy/ endocrinotherapy and subsequent CIK infusion).ResultsWe found that overall survival (OS) and recurrence-free survival (RFS) were significantly better in the CIK group than that in the control group. PD-L1 expression in tumor tissue sections was showed to be an independent prognostic factor for patients in the CIK treatment group using multivariate survival analysis. Further survival analysis in the CIK group showed that patients with PD-L1 tumor expression exhibited longer OS and RFS. In addition, among all patients who were enrolled in this study, only the patients with PD-L1 expression experienced survival benefits from CIK treatment.ConclusionsOur study showed the relationship between PD-L1 expression and CIK therapy and revealed that PD-L1 expression in the tumor is as an indicator of adjuvant CIK therapy for postoperative breast cancer.
Project description:BackgroundCirculating soluble programmed death ligand 1 (sPD-L1) can negatively regulate T-cell function and serve as a prognostic or predictive marker in a variety of cancers. However, rare studies have evaluated the potential roles of sPD-L1, and no study has estimated its predictive value for the efficacy of immune treatment in colorectal cancer (CRC).MethodsPlasma samples from 192 CRC patients were used to estimate correlations between clinicopathological features and sPD-L1, secreted PD-L1 (secPD-L1) and exosomal PD-L1 (exoPD-L1). Baseline and posttreatment sPD-L1 levels were also investigated in 55 patients with metastatic CRC (mCRC) treated with chemotherapy ± targeted therapy and 40 patients with proficient mismatch repair (pMMR) mCRC treated with combination immunotherapy. Both sPD-L1 and secPD-L1 were quantified by enzyme-linked immunosorbent assay, while exoPD-L1 was analyzed using flow cytometry.ResultssecPD-L1 was the major component and positively correlated with sPD-L1 in CRC, while exoPD-L1 was almost undetectable. Higher levels of sPD-L1 were detected in patients with distant metastasis, especially those with distant lymph node metastasis and tissue combined positive score (CPS) instead of tumor proportion score (TPS). Chemotherapy or targeted therapy did not significantly impact sPD-L1 concentration. Progressive disease on combination immunotherapy was associated with an increase in sPD-L1 level, whereas no significant change was observed in patients with durable clinical benefit.ConclusionsPD-L1 mainly consisted of secPD-L1, and its level was higher in patients with distant metastasis, especially distant lymph node metastasis and positive CPS. sPD-L1 is a potential dynamic marker to identify rapid progression on combination immunotherapy and avoid ineffective treatment for pMMR CRC.
Project description:Cytokine-induced killer (CIK) cell immunotherapy represents an effective treatment strategy for treating hepatocellular carcinoma (HCC). However, the therapeutic benefits of CIK cell treatment can be influenced by differences in complex immune microenvironment between patients. Herein, we investigated the relationship between PD-L1 expression and survival benefits of CIK cell immunotherapy in HCC patients. This retrospective study included 448 HCC patients: 217 cases underwent hepatectomy alone; 231 cases received hepatectomy and post-operative CIK cell transfusion. Immunohistochemistry was used to measure PD-L1 expression in tumor tissue sections from all patients. Meanwhile, flow cytometry was performed to explore the relationship between PD-L1 expression and localized inflammatory response in HCC microenvironment. We found a significantly improved prognosis in CIK treatment group compared with surgery alone group. In the CIK treatment group, higher PD-L1 expression was observed in patients who exhibited long-term survival benefit. Survival analysis showed patients with ≥5% PD-L1 expression had better overall survival (OS) and recurrence-free survival (RFS) than patients with 1-5% or <1% PD-L1 expression, particularly in the subgroup with high hepatitis B viral load. By contrast, PD-L1 expression did not show direct impact on the survival of patients in surgery alone group. Additionally, PD-L1 expression was found to be highly associated with hepatitis B viral load and the proportion of tumor-infiltrating lymphocytes in HCC patients. In conclusions, our study indicates that PD-L1 expression may reflect the presence of endogenous host immune response to tumor and serve as a biomarker for predicting survival benefits from adjuvant CIK cell immunotherapy in HCC patients.
Project description:Purpose of reviewImmune checkpoint blockade (ICB) has changed the clinical course of multiple cancer types and durable responses have now been observed in breast cancer (BC) patients. Most data suggest that, compared to other subtypes, triple-negative BC (TNBC) patients are more responsive to ICB, and anti-PD-L1 therapy is now approved in PD-L1+ metastatic TNBC, in combination with chemotherapy.Recent findingsNearly 40% of PD-L1+ TNBC patients did not respond to this combination. Thus, additional biomarkers appear to be necessary to more precisely identify potential responders. A comprehensive analysis of the breast tumor microenvironment (TME) and peripheral blood may identify potential biomarkers for a more accurate selection of patients likely to respond to ICB.SummaryHerein, we summarize key features of the breast TME, and beyond, that may hold predictive power in determining immunotherapy benefit. Incorporation of these features in controlled clinical trials may help further guide personalized care for BC immunotherapy.
Project description:The PD-1/PD-L1 signaling pathway plays a crucial role in cancer immune evasion, and the use of anti-PD-1/PD-L1 antibodies represents a significant milestone in cancer immunotherapy. However, the low response rate observed in unselected patients and the development of therapeutic resistance remain major obstacles to their clinical application. Accumulating studies showed that overexpressed TGF-β is another immunosuppressive factor apart from traditional immune checkpoints. Actually, the effects of PD-1 and TGF-β pathways are independent and interactive, which work together contributing to the immune evasion of cancer cell. It has been verified that blocking TGF-β and PD-L1 simultaneously could enhance the efficacy of PD-L1 monoclonal antibody and overcome its treatment resistance. Based on the bispecific antibody or fusion protein technology, multiple bispecific and bifunctional antibodies have been developed. In the preclinical and clinical studies, these updated antibodies exhibited potent anti-tumor activity, superior to anti-PD-1/PD-L1 monotherapies. In the review, we summarized the advances of bispecific antibodies targeting TGF-β and PD-L1 in cancer immunotherapy. We believe these next-generation immune checkpoint inhibitors would substantially alter the cancer treatment paradigm, especially in anti-PD-1/PD-L1-resistant patients.