Unknown

Dataset Information

0

Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies.


ABSTRACT: Dissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox), and biological N2 fixation (BNF) can influence the nitrogen (N) use efficiency of rice production. While the effect of N application on BNF is known, little is known about its effect on NO3- partitioning between DNRA, denitrification, and anammox. Here, we investigated the effect of N application on DNRA, denitrification, anammox, and BNF and on the abundance of relevant genes in three paddy soils in Australia. Rice was grown in a glasshouse with N fertilizer (150 kg N ha-1) and without N fertilizer for 75 days, and the rhizosphere and bulk soils were collected separately for laboratory incubation and quantitative PCR analysis. Nitrogen application reduced DNRA rates by >16% in all the soils regardless of the rhizospheric zone, but it did not affect the nrfA gene abundance. Without N, the amount and proportion of NO3- reduced by DNRA (0.42 to 0.52 μg g-1 soil day-1 and 45 to 55%, respectively) were similar to or higher than the amount and proportion reduced by denitrification. However, with N the amount of NO3- reduced by DNRA (0.32 to 0.40 μg g-1 soil day-1) was 40 to 50% lower than the amount of NO3- reduced by denitrification. Denitrification loss increased by >20% with N addition and was affected by the rhizospheric zones. Nitrogen loss was minimal through anammox, while BNF added 0.02 to 0.25 μg N g-1 soil day-1 We found that DNRA plays a significant positive role in paddy soil N retention, as it accounts for up to 55% of the total NO3- reduction, but this is reduced by N application.IMPORTANCE This study provides evidence that nitrogen addition reduces nitrogen retention through DNRA and increases nitrogen loss via denitrification in a paddy soil ecosystem. DNRA is one of the major NO3- reduction processes, and it can outcompete denitrification in NO3- consumption when rice paddies are low in nitrogen. A significant level of DNRA activity in paddy soils indicates that DNRA plays an important role in retaining nitrogen by reducing NO3- availability for denitrification and leaching. Our study shows that by reducing N addition to rice paddies, there is a positive effect from reduced nitrogen loss but, more importantly, from the conversion of NO3- to NH4+, which is the favored form of mineral nitrogen for plant uptake.

SUBMITTER: Pandey A 

PROVIDER: S-EPMC6102975 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7734399 | biostudies-literature
| S-EPMC3358729 | biostudies-other
| S-EPMC6084575 | biostudies-literature
| S-EPMC4686598 | biostudies-other